Skip to content

TST: Broken asv performance test sparse.py #17658

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Licht-T opened this issue Sep 24, 2017 · 0 comments · Fixed by #17659
Closed

TST: Broken asv performance test sparse.py #17658

Licht-T opened this issue Sep 24, 2017 · 0 comments · Fixed by #17659
Labels
Performance Memory or execution speed performance Sparse Sparse Data Type
Milestone

Comments

@Licht-T
Copy link
Contributor

Licht-T commented Sep 24, 2017

Code Sample, a copy-pastable example if possible

  • asv version
[asv_bench] asv --version
asv 0.3.dev1126+2320b0f
  • Input
# Your code here
asv continuous -f 1.1 origin/master HEAD -b sparse
  • Output
· Creating environments
· Discovering benchmarks
·· Uninstalling from conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt..
·· Installing into conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt..
· Running 42 total benchmarks (2 commits * 1 environments * 21 benchmarks)
[  0.00%] · For pandas commit hash 8276a420:
[  0.00%] ·· Building for conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt....
[  0.00%] ·· Benchmarking conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt
[  2.38%] ··· Running reshape.unstack_sparse_keyspace.time_unstack_sparse_keyspace                                                                            1.88±0.06ms
[  4.76%] ··· Running sparse.sparse_arithmetic_block.time_sparse_addition                                                                                          failed
...

Problem description

Whole pandas/asv_bench/benchmarks/sparse.py tests fail.
It seems that from itertools import repeat conflicts with the repeat parameter for asv.

[asv_bench] head benchmarks/sparse.py
from itertools import repeat

from .pandas_vb_common import *
import scipy.sparse
from pandas import SparseSeries, SparseDataFrame


class sparse_series_to_frame(object):
    goal_time = 0.2

Expected Output

After removing from itertools import repeat, it works well.

[asv_bench] head benchmarks/sparse.py
import itertools

from .pandas_vb_common import *
import scipy.sparse
from pandas import SparseSeries, SparseDataFrame


class sparse_series_to_frame(object):
    goal_time = 0.2
[asv_bench] asv continuous -f 1.1 origin/master HEAD -b sparse
· Creating environments
· Discovering benchmarks
·· Uninstalling from conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt.
·· Installing into conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt...
· Running 42 total benchmarks (2 commits * 1 environments * 21 benchmarks)
[  0.00%] · For pandas commit hash 965c1c89:
[  0.00%] ·· Building for conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt...............................................................
[  0.00%] ·· Benchmarking conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt
[  2.38%] ··· Running reshape.unstack_sparse_keyspace.time_unstack_sparse_keyspace                                                                            1.80±0.03ms
[  4.76%] ··· Running sparse.sparse_arithmetic_block.time_sparse_addition                                                                                     6.54±0.07ms
[  7.14%] ··· Running sparse.sparse_arithmetic_block.time_sparse_addition_zero                                                                                 6.73±0.3ms
...

Output of pd.show_versions()

INSTALLED VERSIONS ------------------ commit: None python: 3.6.2.final.0 python-bits: 64 OS: Darwin OS-release: 15.4.0 machine: x86_64 processor: i386 byteorder: little LC_ALL: None LANG: ja_JP.UTF-8 LOCALE: ja_JP.UTF-8

pandas: 0.20.3
pytest: 3.2.1
pip: 9.0.1
setuptools: 32.2.0
Cython: 0.26
numpy: 1.13.1
scipy: 0.19.1
xarray: None
IPython: 6.1.0
sphinx: None
patsy: None
dateutil: 2.6.1
pytz: 2017.2
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 2.0.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: 0.999999999
sqlalchemy: 1.1.14
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
pandas_gbq: None
pandas_datareader: None

@jreback jreback added Performance Memory or execution speed performance Sparse Sparse Data Type labels Sep 24, 2017
@jreback jreback added this to the 0.21.0 milestone Sep 24, 2017
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Performance Memory or execution speed performance Sparse Sparse Data Type
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants