-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
BUG: astype(CategoricalDtype) has no effect #15078
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Comments
Can you show a reproducible example that shows the problem? For me this works with a simple example:
|
Your solution is working. |
Hmm, that should actually work I think. Or otherwise an error. I reopened the issue and updated the top post with an example. |
maybe though this is an internal type (and not directly exposed to the user) |
Yeah, and it should not necessarily work for me, but if we don't accept it as a dtype, then it should raise an error IMO. |
this is with our new default |
It does not depend on that (and the default was already to raise, the keyword name changed but not the default value). The reason is that the provided dtype is converted to a numpy dtype:
For that reason also something like It can just a bit confusing to users I think, as an instantiated CategoricalDtype actually works:
which comes down to this difference:
|
Additionnally, There are numpy dtypes and Pandas types...
We spent some time to find where is the real object of 'category' as
this is not really mentionned in the documentation.
Joris Van den Bossche wrote:
…
It does not depend on that (and the default /was/ already to raise,
the keyword name changed but not the default value).
The reason is that the provided dtype is converted to a numpy dtype:
|In [24]: np.dtype(list)
Out[24]: dtype('O')
In [25]: np.dtype(pd.types.dtypes.CategoricalDtype)
Out[25]: dtype('O')
|
For that reason also something like |s.astype(list)| does work but
does not do anything (for an object series).
It can just a bit confusing to users I think, as an instantiated
CategoricalDtype actually works:
|In [26]: s.astype(pd.types.dtypes.CategoricalDtype())
Out[26]:
0 a
1 b
2 c
dtype: category
Categories (3, object): [a, b, c]
In [27]: s.astype(pd.types.dtypes.CategoricalDtype)
Out[27]:
0 a
1 b
2 c
dtype: object
|
which comes down to this difference:
|In [28]: pd.types.common.is_categorical_dtype(pd.types.dtypes.CategoricalDtype)
Out[28]: False
In [29]: pd.types.common.is_categorical_dtype(pd.types.dtypes.CategoricalDtype())
Out[29]: True
|
—
You are receiving this because you modified the open/close state.
Reply to this email directly, view it on GitHub
<#15078 (comment)>,
or mute the thread
<https://github.com/notifications/unsubscribe-auth/AR10p_PdX0ZjZjjg3e7uPFPiJTq1pDYgks5rP8GAgaJpZM4LdWAs>.
|
At the moment, the |
We extended the CategoricalDtype to accept optional categories and ordered argument. ```python pd.CategoricalDtype(categories=['a', 'b'], ordered=True ``` CategoricalDtype is now part of the public API. This allows users to specify the desired categories and orderedness of an operation ahead of time. The current behavior, which is still possible with categories=None, the default, is to infer the categories from whatever is present. This change will make it easy to implement support for specifying categories that are know ahead of time in other places e.g. .astype, .read_csv, and the Series constructor. Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
We extended the CategoricalDtype to accept optional categories and ordered argument. ```python pd.CategoricalDtype(categories=['a', 'b'], ordered=True ``` CategoricalDtype is now part of the public API. This allows users to specify the desired categories and orderedness of an operation ahead of time. The current behavior, which is still possible with categories=None, the default, is to infer the categories from whatever is present. This change will make it easy to implement support for specifying categories that are know ahead of time in other places e.g. .astype, .read_csv, and the Series constructor. Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
We extended the CategoricalDtype to accept optional categories and ordered argument. ```python pd.CategoricalDtype(categories=['a', 'b'], ordered=True ``` CategoricalDtype is now part of the public API. This allows users to specify the desired categories and orderedness of an operation ahead of time. The current behavior, which is still possible with categories=None, the default, is to infer the categories from whatever is present. This change will make it easy to implement support for specifying categories that are know ahead of time in other places e.g. .astype, .read_csv, and the Series constructor. Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
We extended the CategoricalDtype to accept optional categories and ordered argument. ```python pd.CategoricalDtype(categories=['a', 'b'], ordered=True ``` CategoricalDtype is now part of the public API. This allows users to specify the desired categories and orderedness of an operation ahead of time. The current behavior, which is still possible with categories=None, the default, is to infer the categories from whatever is present. This change will make it easy to implement support for specifying categories that are know ahead of time in other places e.g. .astype, .read_csv, and the Series constructor. Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
We extended the CategoricalDtype to accept optional categories and ordered argument. ```python pd.CategoricalDtype(categories=['a', 'b'], ordered=True ``` CategoricalDtype is now part of the public API. This allows users to specify the desired categories and orderedness of an operation ahead of time. The current behavior, which is still possible with categories=None, the default, is to infer the categories from whatever is present. This change will make it easy to implement support for specifying categories that are know ahead of time in other places e.g. .astype, .read_csv, and the Series constructor. Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
We extended the CategoricalDtype to accept optional categories and ordered argument. ```python pd.CategoricalDtype(categories=['a', 'b'], ordered=True ``` CategoricalDtype is now part of the public API. This allows users to specify the desired categories and orderedness of an operation ahead of time. The current behavior, which is still possible with categories=None, the default, is to infer the categories from whatever is present. This change will make it easy to implement support for specifying categories that are know ahead of time in other places e.g. .astype, .read_csv, and the Series constructor. Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
We extended the CategoricalDtype to accept optional categories and ordered argument. ```python pd.CategoricalDtype(categories=['a', 'b'], ordered=True ``` CategoricalDtype is now part of the public API. This allows users to specify the desired categories and orderedness of an operation ahead of time. The current behavior, which is still possible with categories=None, the default, is to infer the categories from whatever is present. This change will make it easy to implement support for specifying categories that are know ahead of time in other places e.g. .astype, .read_csv, and the Series constructor. Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
We extended the CategoricalDtype to accept optional categories and ordered argument. ```python pd.CategoricalDtype(categories=['a', 'b'], ordered=True ``` CategoricalDtype is now part of the public API. This allows users to specify the desired categories and orderedness of an operation ahead of time. The current behavior, which is still possible with categories=None, the default, is to infer the categories from whatever is present. This change will make it easy to implement support for specifying categories that are know ahead of time in other places e.g. .astype, .read_csv, and the Series constructor. Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
We extended the CategoricalDtype to accept optional categories and ordered argument. ```python pd.CategoricalDtype(categories=['a', 'b'], ordered=True ``` CategoricalDtype is now part of the public API. This allows users to specify the desired categories and orderedness of an operation ahead of time. The current behavior, which is still possible with categories=None, the default, is to infer the categories from whatever is present. This change will make it easy to implement support for specifying categories that are know ahead of time in other places e.g. .astype, .read_csv, and the Series constructor. Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
We extended the CategoricalDtype to accept optional categories and ordered argument. ```python pd.CategoricalDtype(categories=['a', 'b'], ordered=True ``` CategoricalDtype is now part of the public API. This allows users to specify the desired categories and orderedness of an operation ahead of time. The current behavior, which is still possible with categories=None, the default, is to infer the categories from whatever is present. This change will make it easy to implement support for specifying categories that are know ahead of time in other places e.g. .astype, .read_csv, and the Series constructor. Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
We extended the CategoricalDtype to accept optional categories and ordered argument. ```python pd.CategoricalDtype(categories=['a', 'b'], ordered=True ``` CategoricalDtype is now part of the public API. This allows users to specify the desired categories and orderedness of an operation ahead of time. The current behavior, which is still possible with categories=None, the default, is to infer the categories from whatever is present. This change will make it easy to implement support for specifying categories that are know ahead of time in other places e.g. .astype, .read_csv, and the Series constructor. Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
We extended the CategoricalDtype to accept optional categories and ordered argument. ```python pd.CategoricalDtype(categories=['a', 'b'], ordered=True ``` CategoricalDtype is now part of the public API. This allows users to specify the desired categories and orderedness of an operation ahead of time. The current behavior, which is still possible with categories=None, the default, is to infer the categories from whatever is present. This change will make it easy to implement support for specifying categories that are know ahead of time in other places e.g. .astype, .read_csv, and the Series constructor. Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
We extended the CategoricalDtype to accept optional categories and ordered argument. ```python pd.CategoricalDtype(categories=['a', 'b'], ordered=True ``` CategoricalDtype is now part of the public API. This allows users to specify the desired categories and orderedness of an operation ahead of time. The current behavior, which is still possible with categories=None, the default, is to infer the categories from whatever is present. This change will make it easy to implement support for specifying categories that are know ahead of time in other places e.g. .astype, .read_csv, and the Series constructor. Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
We extended the CategoricalDtype to accept optional categories and ordered argument. ```python pd.CategoricalDtype(categories=['a', 'b'], ordered=True ``` CategoricalDtype is now part of the public API. This allows users to specify the desired categories and orderedness of an operation ahead of time. The current behavior, which is still possible with categories=None, the default, is to infer the categories from whatever is present. This change will make it easy to implement support for specifying categories that are know ahead of time in other places e.g. .astype, .read_csv, and the Series constructor. Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
Closes pandas-dev#14711 Closes pandas-dev#15078 Closes pandas-dev#14676
The following fails silently to convert the dtype:
I would think this either to work or either to raise an error that the dtype is not undertood.
Code Sample
When using dictionnary of dtype, it does not convert the dataframe :
Types are not modified whereas df['col']= df['col].astype(type1) works....
Problem description
When using dictionnary of dtype, it does not convert the dataframe :
Types are not modified whereas df['col']= df['col].astype(type1) works....
Expected Output
columns are converted into the desire types.
Output of
pd.show_versions()
Pandas 0.19.2
The text was updated successfully, but these errors were encountered: