You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Sort took 40.91 seconds
Python version 2.7.12 |Anaconda custom (64-bit)| (default, Jun 29 2016, 11:07:13) [MSC v.1500 64 bit (AMD64)]
pandas version 0.18.1
Results with Python 3.5
Sort took 81.30 seconds
Python version 3.5.2 |Continuum Analytics, Inc.| (default, Jul 5 2016, 11:41:13) [MSC v.1900 64 bit (AMD64)]
pandas version 0.18.1
The text was updated successfully, but these errors were encountered:
note that using inplace is pretty non-idiomatic as it promotes less readable and more error prone code
2.7
In [2]: import pandas as pd
...: import numpy as np
...: from time import time
...: import sys
...:
...: df_data = pd.DataFrame(np.random.randint(0,int(1e6),int(20e5)), columns=['pop_id'])
...: df_data['PL_dB'] = 50 + np.random.random(df_data.shape[0]) * 100
...: df_data['Rx_dBm'] = 23 - df_data.PL_dB
...: df_data['noise_mW'] = (10.**(df_data.Rx_dBm / 10.)).astype('float32')
In [3]: %timeit df_data.sort_values(by=['pop_id', 'Rx_dBm'], ascending=[True, False])
1 loop, best of 3: 1.86 s per loop
In [4]: pd.__version__
Out[4]: '0.18.1+403.ga0151a7'
In [5]: sys.version
Out[5]: '2.7.11 |Continuum Analytics, Inc.| (default, Dec 6 2015, 18:57:58) \n[GCC 4.2.1 (Apple Inc. build 5577)]'
3.5
In [2]: %timeit df_data.sort_values(by=['pop_id', 'Rx_dBm'], ascending=[True, False])
1 loop, best of 3: 1.76 s per loop
In [3]: pd.__version__
...:
Out[3]: '0.18.1+403.ga0151a7'
In [4]: sys.version
...:
Out[4]: '3.5.1 |Continuum Analytics, Inc.| (default, Dec 7 2015, 11:24:55) \n[GCC 4.2.1 (Apple Inc. build 5577)]'
Code Sample, a copy-pastable example if possible
import pandas as pd
import numpy as np
from time import time
import sys
df_data = pd.DataFrame(np.random.randint(0,int(1e6),int(20e6)), columns=['pop_id'])
df_data['PL_dB'] = 50 + np.random.random(df_data.shape[0]) * 100
df_data['Rx_dBm'] = 23 - df_data.PL_dB
df_data['noise_mW'] = (10.**(df_data.Rx_dBm / 10.)).astype('float32')
start = time()
df_data.sort_values(by=['pop_id', 'Rx_dBm'], ascending=[True, False], inplace=True)
df_data.reset_index(drop=True, inplace=True)
print("Sort took {:0.2f} seconds".format(time() - start))
print('Python version ' + sys.version)
print('pandas version ' + pd.version)
output of
pd.show_versions()
For Python 2.7
INSTALLED VERSIONS
commit: None
python: 2.7.12.final.0
python-bits: 64
OS: Windows
OS-release: 7
machine: AMD64
processor: Intel64 Family 6 Model 69 Stepping 1, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
pandas: 0.18.1
nose: 1.3.7
pip: 8.1.2
setuptools: 25.1.6
Cython: 0.24.1
numpy: 1.11.1
scipy: 0.18.0
statsmodels: 0.6.1
xarray: 0.8.2
IPython: 5.1.0
sphinx: 1.4.1
patsy: 0.4.1
dateutil: 2.5.3
pytz: 2016.6.1
blosc: None
bottleneck: 1.1.0
tables: 3.2.2
numexpr: 2.6.1
matplotlib: 1.5.1
openpyxl: 2.3.2
xlrd: 1.0.0
xlwt: 1.1.2
xlsxwriter: 0.9.2
lxml: 3.6.4
bs4: 4.4.1
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: 1.0.13
pymysql: None
psycopg2: None
jinja2: 2.8
boto: 2.40.0
pandas_datareader: None
For Python 3.5
INSTALLED VERSIONS
commit: None
python: 3.5.2.final.0
python-bits: 64
OS: Windows
OS-release: 7
machine: AMD64
processor: Intel64 Family 6 Model 69 Stepping 1, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
pandas: 0.18.1
nose: None
pip: 8.1.2
setuptools: 25.1.6
Cython: 0.24.1
numpy: 1.11.1
scipy: 0.18.0
statsmodels: None
xarray: 0.8.2
IPython: 5.1.0
sphinx: 1.4.1
patsy: None
dateutil: 2.5.3
pytz: 2016.6.1
blosc: None
bottleneck: 1.1.0
tables: 3.2.2
numexpr: 2.6.1
matplotlib: 1.5.1
openpyxl: None
xlrd: 1.0.0
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: 1.0.13
pymysql: None
psycopg2: None
jinja2: 2.8
boto: None
pandas_datareader: None
Results with Python 2.7
Sort took 40.91 seconds
Python version 2.7.12 |Anaconda custom (64-bit)| (default, Jun 29 2016, 11:07:13) [MSC v.1500 64 bit (AMD64)]
pandas version 0.18.1
Results with Python 3.5
Sort took 81.30 seconds
Python version 3.5.2 |Continuum Analytics, Inc.| (default, Jul 5 2016, 11:41:13) [MSC v.1900 64 bit (AMD64)]
pandas version 0.18.1
The text was updated successfully, but these errors were encountered: