Closed
Description
Hi,
The logic for Series.interpolate assumes the indexes are equally spaced. With a floating point index this is not the desired interpolation. For example:
x1 = np.array([0, 0.25, 0.77, 1.2, 1.4, 2.6, 3.1])
y1 = np.array([0, 1.1, 0.5, 1.5, 1.2, 2.1, 2.4])
x2 = np.array([0, 0.25, 0.66, 1.0, 1.2, 1.4, 3.1])
y2 = np.array([0, 0.2, 0.8, 1.1, 2.2, 0.1, 2.4])
df1 = DataFrame(data=y1, index=x1, columns=['A'])
df1.plot(marker='o')
df2 = DataFrame(data=y2, index=x2, columns=['A'])
df2.plot(marker='o')
df3=df1 - df2
df3.plot(marker='o')
print df3
def resample(signals):
aligned_x_vals = reduce(lambda s1, s2: s1.index.union(s2.index), signals)
return map(lambda s: s.reindex(aligned_x_vals).apply(Series.interpolate), signals)
sig1, sig2 = resample([df1, df2])
sig3 = sig1 - sig2
plt.plot(df1.index, df1.values, marker='D')
plt.plot(sig1.index, sig1.values, marker='o')
plt.grid()
plt.figure()
plt.plot(df2.index, df2.values, marker='o')
plt.plot(sig2.index ,sig2.values, marker='o')
plt.grid()
I expect sig1 and sig2 to have more points than df1 and df2 but with the values interpolated. There are a few points that are not overlapping because it is assumed they are equally spaced. In my opinion if the index is a floating point the user wants to interpolate by the index's value and don't assume they are equally spaced. It should do something like this:
import numpy as np
from pandas import *
def interpolate(serie):
try:
inds = np.array([float(d) for d in serie.index])
except ValueError:
inds = np.arange(len(serie))
values = serie.values
invalid = isnull(values)
valid = -invalid
firstIndex = valid.argmax()
valid = valid[firstIndex:]
invalid = invalid[firstIndex:]
inds = inds[firstIndex:]
result = values.copy()
result[firstIndex:][invalid] = np.interp(inds[invalid], inds[valid],
values[firstIndex:][valid])
return Series(result, index=serie.index, name=serie.name)
Thanks