@@ -87,12 +87,10 @@ def inner(*args, **kwargs):
87
87
88
88
89
89
class ParallelGroupbyMethods :
90
-
91
90
params = ([2 , 4 , 8 ], ["count" , "last" , "max" , "mean" , "min" , "prod" , "sum" , "var" ])
92
91
param_names = ["threads" , "method" ]
93
92
94
93
def setup (self , threads , method ):
95
-
96
94
N = 10 ** 6
97
95
ngroups = 10 ** 3
98
96
df = DataFrame (
@@ -119,12 +117,10 @@ def time_loop(self, threads, method):
119
117
120
118
121
119
class ParallelGroups :
122
-
123
120
params = [2 , 4 , 8 ]
124
121
param_names = ["threads" ]
125
122
126
123
def setup (self , threads ):
127
-
128
124
size = 2 ** 22
129
125
ngroups = 10 ** 3
130
126
data = Series (np .random .randint (0 , ngroups , size = size ))
@@ -140,12 +136,10 @@ def time_get_groups(self, threads):
140
136
141
137
142
138
class ParallelTake1D :
143
-
144
139
params = ["int64" , "float64" ]
145
140
param_names = ["dtype" ]
146
141
147
142
def setup (self , dtype ):
148
-
149
143
N = 10 ** 6
150
144
df = DataFrame ({"col" : np .arange (N , dtype = dtype )})
151
145
indexer = np .arange (100 , len (df ) - 100 )
@@ -167,7 +161,6 @@ class ParallelKth:
167
161
repeat = 5
168
162
169
163
def setup (self ):
170
-
171
164
N = 10 ** 7
172
165
k = 5 * 10 ** 5
173
166
kwargs_list = [{"arr" : np .random .randn (N )}, {"arr" : np .random .randn (N )}]
@@ -184,7 +177,6 @@ def time_kth_smallest(self):
184
177
185
178
class ParallelDatetimeFields :
186
179
def setup (self ):
187
-
188
180
N = 10 ** 6
189
181
self .dti = date_range ("1900-01-01" , periods = N , freq = "T" )
190
182
self .period = self .dti .to_period ("D" )
@@ -233,12 +225,10 @@ def run(period):
233
225
234
226
235
227
class ParallelRolling :
236
-
237
228
params = ["median" , "mean" , "min" , "max" , "var" , "skew" , "kurt" , "std" ]
238
229
param_names = ["method" ]
239
230
240
231
def setup (self , method ):
241
-
242
232
win = 100
243
233
arr = np .random .rand (100000 )
244
234
if hasattr (DataFrame , "rolling" ):
@@ -274,14 +264,12 @@ def time_rolling(self, method):
274
264
275
265
276
266
class ParallelReadCSV (BaseIO ):
277
-
278
267
number = 1
279
268
repeat = 5
280
269
params = ["float" , "object" , "datetime" ]
281
270
param_names = ["dtype" ]
282
271
283
272
def setup (self , dtype ):
284
-
285
273
rows = 10000
286
274
cols = 50
287
275
data = {
@@ -309,14 +297,12 @@ def time_read_csv(self, dtype):
309
297
310
298
311
299
class ParallelFactorize :
312
-
313
300
number = 1
314
301
repeat = 5
315
302
params = [2 , 4 , 8 ]
316
303
param_names = ["threads" ]
317
304
318
305
def setup (self , threads ):
319
-
320
306
strings = tm .makeStringIndex (100000 )
321
307
322
308
@test_parallel (num_threads = threads )
0 commit comments