@@ -3589,21 +3589,21 @@ def mad(self, axis=0, skipna=True, level=None):
3589
3589
@Substitution (name = 'unbiased variance' , shortname = 'var' ,
3590
3590
na_action = _doc_exclude_na , extras = '' )
3591
3591
@Appender (_stat_doc )
3592
- def var (self , axis = 0 , skipna = True , level = None ):
3592
+ def var (self , axis = 0 , skipna = True , level = None , ddof = 1 ):
3593
3593
if level is not None :
3594
3594
return self ._agg_by_level ('var' , axis = axis , level = level ,
3595
3595
skipna = skipna )
3596
3596
return self ._reduce (nanops .nanvar , axis = axis , skipna = skipna ,
3597
- numeric_only = None )
3597
+ numeric_only = None , ddof = ddof )
3598
3598
3599
3599
@Substitution (name = 'unbiased standard deviation' , shortname = 'std' ,
3600
3600
na_action = _doc_exclude_na , extras = '' )
3601
3601
@Appender (_stat_doc )
3602
- def std (self , axis = 0 , skipna = True , level = None ):
3602
+ def std (self , axis = 0 , skipna = True , level = None , ddof = 1 ):
3603
3603
if level is not None :
3604
3604
return self ._agg_by_level ('std' , axis = axis , level = level ,
3605
3605
skipna = skipna )
3606
- return np .sqrt (self .var (axis = axis , skipna = skipna ))
3606
+ return np .sqrt (self .var (axis = axis , skipna = skipna , ddof = ddof ))
3607
3607
3608
3608
@Substitution (name = 'unbiased skewness' , shortname = 'skew' ,
3609
3609
na_action = _doc_exclude_na , extras = '' )
@@ -3623,8 +3623,8 @@ def _agg_by_level(self, name, axis=0, level=0, skipna=True):
3623
3623
applyf = lambda x : method (x , axis = axis , skipna = skipna )
3624
3624
return grouped .aggregate (applyf )
3625
3625
3626
- def _reduce (self , op , axis = 0 , skipna = True , numeric_only = None ):
3627
- f = lambda x : op (x , axis = axis , skipna = skipna )
3626
+ def _reduce (self , op , axis = 0 , skipna = True , numeric_only = None , ** kwds ):
3627
+ f = lambda x : op (x , axis = axis , skipna = skipna , ** kwds )
3628
3628
labels = self ._get_agg_axis (axis )
3629
3629
if numeric_only is None :
3630
3630
try :
0 commit comments