@@ -3585,21 +3585,21 @@ def mad(self, axis=0, skipna=True, level=None):
3585
3585
@Substitution (name = 'unbiased variance' , shortname = 'var' ,
3586
3586
na_action = _doc_exclude_na , extras = '' )
3587
3587
@Appender (_stat_doc )
3588
- def var (self , axis = 0 , skipna = True , level = None ):
3588
+ def var (self , axis = 0 , skipna = True , level = None , ddof = 1 ):
3589
3589
if level is not None :
3590
3590
return self ._agg_by_level ('var' , axis = axis , level = level ,
3591
3591
skipna = skipna )
3592
3592
return self ._reduce (nanops .nanvar , axis = axis , skipna = skipna ,
3593
- numeric_only = None )
3593
+ numeric_only = None , ddof = ddof )
3594
3594
3595
3595
@Substitution (name = 'unbiased standard deviation' , shortname = 'std' ,
3596
3596
na_action = _doc_exclude_na , extras = '' )
3597
3597
@Appender (_stat_doc )
3598
- def std (self , axis = 0 , skipna = True , level = None ):
3598
+ def std (self , axis = 0 , skipna = True , level = None , ddof = 1 ):
3599
3599
if level is not None :
3600
3600
return self ._agg_by_level ('std' , axis = axis , level = level ,
3601
3601
skipna = skipna )
3602
- return np .sqrt (self .var (axis = axis , skipna = skipna ))
3602
+ return np .sqrt (self .var (axis = axis , skipna = skipna , ddof = ddof ))
3603
3603
3604
3604
@Substitution (name = 'unbiased skewness' , shortname = 'skew' ,
3605
3605
na_action = _doc_exclude_na , extras = '' )
@@ -3619,8 +3619,8 @@ def _agg_by_level(self, name, axis=0, level=0, skipna=True):
3619
3619
applyf = lambda x : method (x , axis = axis , skipna = skipna )
3620
3620
return grouped .aggregate (applyf )
3621
3621
3622
- def _reduce (self , op , axis = 0 , skipna = True , numeric_only = None ):
3623
- f = lambda x : op (x , axis = axis , skipna = skipna )
3622
+ def _reduce (self , op , axis = 0 , skipna = True , numeric_only = None , ** kwds ):
3623
+ f = lambda x : op (x , axis = axis , skipna = skipna , ** kwds )
3624
3624
labels = self ._get_agg_axis (axis )
3625
3625
if numeric_only is None :
3626
3626
try :
0 commit comments