Skip to content

Commit 90961f2

Browse files
FHaasejreback
authored andcommitted
DOC: Fix PEP-8 issues in 10min.rst (#23908)
1 parent 6af9c30 commit 90961f2

File tree

1 file changed

+34
-30
lines changed

1 file changed

+34
-30
lines changed

doc/source/10min.rst

+34-30
Original file line numberDiff line numberDiff line change
@@ -5,19 +5,19 @@
55
.. ipython:: python
66
:suppress:
77
8+
import os
89
import numpy as np
10+
911
import pandas as pd
10-
import os
12+
1113
np.random.seed(123456)
1214
np.set_printoptions(precision=4, suppress=True)
13-
import matplotlib
14-
# matplotlib.style.use('default')
1515
pd.options.display.max_rows = 15
1616
17-
#### portions of this were borrowed from the
18-
#### Pandas cheatsheet
19-
#### created during the PyData Workshop-Sprint 2012
20-
#### Hannah Chen, Henry Chow, Eric Cox, Robert Mauriello
17+
# portions of this were borrowed from the
18+
# Pandas cheatsheet
19+
# created during the PyData Workshop-Sprint 2012
20+
# Hannah Chen, Henry Chow, Eric Cox, Robert Mauriello
2121
2222
2323
********************
@@ -31,9 +31,8 @@ Customarily, we import as follows:
3131

3232
.. ipython:: python
3333
34-
import pandas as pd
3534
import numpy as np
36-
import matplotlib.pyplot as plt
35+
import pandas as pd
3736
3837
Object Creation
3938
---------------
@@ -55,7 +54,7 @@ and labeled columns:
5554
5655
dates = pd.date_range('20130101', periods=6)
5756
dates
58-
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
57+
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
5958
df
6059
6160
Creating a ``DataFrame`` by passing a dict of objects that can be converted to series-like.
@@ -64,7 +63,7 @@ Creating a ``DataFrame`` by passing a dict of objects that can be converted to s
6463
6564
df2 = pd.DataFrame({'A': 1.,
6665
'B': pd.Timestamp('20130102'),
67-
'C': pd.Series(1, index=list(range(4)),dtype='float32'),
66+
'C': pd.Series(1, index=list(range(4)), dtype='float32'),
6867
'D': np.array([3] * 4, dtype='int32'),
6968
'E': pd.Categorical(["test", "train", "test", "train"]),
7069
'F': 'foo'})
@@ -190,31 +189,31 @@ Selecting on a multi-axis by label:
190189

191190
.. ipython:: python
192191
193-
df.loc[:,['A','B']]
192+
df.loc[:, ['A', 'B']]
194193
195194
Showing label slicing, both endpoints are *included*:
196195

197196
.. ipython:: python
198197
199-
df.loc['20130102':'20130104',['A','B']]
198+
df.loc['20130102':'20130104', ['A', 'B']]
200199
201200
Reduction in the dimensions of the returned object:
202201

203202
.. ipython:: python
204203
205-
df.loc['20130102',['A','B']]
204+
df.loc['20130102', ['A', 'B']]
206205
207206
For getting a scalar value:
208207

209208
.. ipython:: python
210209
211-
df.loc[dates[0],'A']
210+
df.loc[dates[0], 'A']
212211
213212
For getting fast access to a scalar (equivalent to the prior method):
214213

215214
.. ipython:: python
216215
217-
df.at[dates[0],'A']
216+
df.at[dates[0], 'A']
218217
219218
Selection by Position
220219
~~~~~~~~~~~~~~~~~~~~~
@@ -231,37 +230,37 @@ By integer slices, acting similar to numpy/python:
231230

232231
.. ipython:: python
233232
234-
df.iloc[3:5,0:2]
233+
df.iloc[3:5, 0:2]
235234
236235
By lists of integer position locations, similar to the numpy/python style:
237236

238237
.. ipython:: python
239238
240-
df.iloc[[1,2,4],[0,2]]
239+
df.iloc[[1, 2, 4], [0, 2]]
241240
242241
For slicing rows explicitly:
243242

244243
.. ipython:: python
245244
246-
df.iloc[1:3,:]
245+
df.iloc[1:3, :]
247246
248247
For slicing columns explicitly:
249248

250249
.. ipython:: python
251250
252-
df.iloc[:,1:3]
251+
df.iloc[:, 1:3]
253252
254253
For getting a value explicitly:
255254

256255
.. ipython:: python
257256
258-
df.iloc[1,1]
257+
df.iloc[1, 1]
259258
260259
For getting fast access to a scalar (equivalent to the prior method):
261260

262261
.. ipython:: python
263262
264-
df.iat[1,1]
263+
df.iat[1, 1]
265264
266265
Boolean Indexing
267266
~~~~~~~~~~~~~~~~
@@ -303,19 +302,19 @@ Setting values by label:
303302

304303
.. ipython:: python
305304
306-
df.at[dates[0],'A'] = 0
305+
df.at[dates[0], 'A'] = 0
307306
308307
Setting values by position:
309308

310309
.. ipython:: python
311310
312-
df.iat[0,1] = 0
311+
df.iat[0, 1] = 0
313312
314313
Setting by assigning with a NumPy array:
315314

316315
.. ipython:: python
317316
318-
df.loc[:,'D'] = np.array([5] * len(df))
317+
df.loc[:, 'D'] = np.array([5] * len(df))
319318
320319
The result of the prior setting operations.
321320

@@ -345,7 +344,7 @@ returns a copy of the data.
345344
.. ipython:: python
346345
347346
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
348-
df1.loc[dates[0]:dates[1],'E'] = 1
347+
df1.loc[dates[0]:dates[1], 'E'] = 1
349348
df1
350349
351350
To drop any rows that have missing data.
@@ -653,7 +652,8 @@ pandas can include categorical data in a ``DataFrame``. For full docs, see the
653652

654653
.. ipython:: python
655654
656-
df = pd.DataFrame({"id":[1, 2, 3, 4, 5, 6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
655+
df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6],
656+
"raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']})
657657
658658
Convert the raw grades to a categorical data type.
659659

@@ -674,7 +674,8 @@ Reorder the categories and simultaneously add the missing categories (methods un
674674

675675
.. ipython:: python
676676
677-
df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
677+
df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium",
678+
"good", "very good"])
678679
df["grade"]
679680
680681
Sorting is per order in the categories, not lexical order.
@@ -703,7 +704,8 @@ See the :ref:`Plotting <visualization>` docs.
703704
704705
.. ipython:: python
705706
706-
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
707+
ts = pd.Series(np.random.randn(1000),
708+
index=pd.date_range('1/1/2000', periods=1000))
707709
ts = ts.cumsum()
708710
709711
@savefig series_plot_basic.png
@@ -718,8 +720,10 @@ of the columns with labels:
718720
columns=['A', 'B', 'C', 'D'])
719721
df = df.cumsum()
720722
723+
plt.figure()
724+
df.plot()
721725
@savefig frame_plot_basic.png
722-
plt.figure(); df.plot(); plt.legend(loc='best')
726+
plt.legend(loc='best')
723727
724728
Getting Data In/Out
725729
-------------------

0 commit comments

Comments
 (0)