@@ -671,7 +671,7 @@ def transpose(self, *args, **kwargs):
671
671
672
672
def swapaxes (self , axis1 , axis2 , copy = True ):
673
673
"""
674
- Interchange axes and swap values axes appropriately
674
+ Interchange axes and swap values axes appropriately.
675
675
676
676
Returns
677
677
-------
@@ -1907,7 +1907,7 @@ def __array_wrap__(self, result, context=None):
1907
1907
1908
1908
def to_dense (self ):
1909
1909
"""
1910
- Return dense representation of NDFrame (as opposed to sparse)
1910
+ Return dense representation of NDFrame (as opposed to sparse).
1911
1911
"""
1912
1912
# compat
1913
1913
return self
@@ -3597,7 +3597,7 @@ class animal locomotion
3597
3597
3598
3598
def select (self , crit , axis = 0 ):
3599
3599
"""
3600
- Return data corresponding to axis labels matching criteria
3600
+ Return data corresponding to axis labels matching criteria.
3601
3601
3602
3602
.. deprecated:: 0.21.0
3603
3603
Use df.loc[df.index.map(crit)] to select via labels
@@ -4841,7 +4841,7 @@ def sample(self, n=None, frac=None, replace=False, weights=None,
4841
4841
return self .take (locs , axis = axis , is_copy = False )
4842
4842
4843
4843
_shared_docs ['pipe' ] = (r"""
4844
- Apply func(self, \*args, \*\*kwargs)
4844
+ Apply func(self, \*args, \*\*kwargs).
4845
4845
4846
4846
Parameters
4847
4847
----------
@@ -5533,7 +5533,7 @@ def as_blocks(self, copy=True):
5533
5533
@property
5534
5534
def blocks (self ):
5535
5535
"""
5536
- Internal property, property synonym for as_blocks()
5536
+ Internal property, property synonym for as_blocks().
5537
5537
5538
5538
.. deprecated:: 0.21.0
5539
5539
"""
@@ -5918,7 +5918,7 @@ def infer_objects(self):
5918
5918
def fillna (self , value = None , method = None , axis = None , inplace = False ,
5919
5919
limit = None , downcast = None ):
5920
5920
"""
5921
- Fill NA/NaN values using the specified method
5921
+ Fill NA/NaN values using the specified method.
5922
5922
5923
5923
Parameters
5924
5924
----------
@@ -6103,14 +6103,16 @@ def fillna(self, value=None, method=None, axis=None, inplace=False,
6103
6103
6104
6104
def ffill (self , axis = None , inplace = False , limit = None , downcast = None ):
6105
6105
"""
6106
- Synonym for :meth:`DataFrame.fillna(method='ffill') <DataFrame.fillna>`
6106
+ Synonym for :meth:`DataFrame.fillna(method='ffill')
6107
+ <DataFrame.fillna>`.
6107
6108
"""
6108
6109
return self .fillna (method = 'ffill' , axis = axis , inplace = inplace ,
6109
6110
limit = limit , downcast = downcast )
6110
6111
6111
6112
def bfill (self , axis = None , inplace = False , limit = None , downcast = None ):
6112
6113
"""
6113
- Synonym for :meth:`DataFrame.fillna(method='bfill') <DataFrame.fillna>`
6114
+ Synonym for :meth:`DataFrame.fillna(method='bfill')
6115
+ <DataFrame.fillna>`.
6114
6116
"""
6115
6117
return self .fillna (method = 'bfill' , axis = axis , inplace = inplace ,
6116
6118
limit = limit , downcast = downcast )
@@ -8254,7 +8256,7 @@ def rank(self, axis=0, method='average', numeric_only=None,
8254
8256
na_option = 'keep' , ascending = True , pct = False ):
8255
8257
"""
8256
8258
Compute numerical data ranks (1 through n) along axis. Equal values are
8257
- assigned a rank that is the average of the ranks of those values
8259
+ assigned a rank that is the average of the ranks of those values.
8258
8260
8259
8261
Parameters
8260
8262
----------
@@ -8316,7 +8318,7 @@ def ranker(data):
8316
8318
8317
8319
_shared_docs ['align' ] = ("""
8318
8320
Align two objects on their axes with the
8319
- specified join method for each axis Index
8321
+ specified join method for each axis Index.
8320
8322
8321
8323
Parameters
8322
8324
----------
@@ -9905,7 +9907,7 @@ def _add_numeric_operations(cls):
9905
9907
9906
9908
@Substitution (outname = 'mad' ,
9907
9909
desc = "Return the mean absolute deviation of the values "
9908
- "for the requested axis" ,
9910
+ "for the requested axis. " ,
9909
9911
name1 = name , name2 = name2 , axis_descr = axis_descr ,
9910
9912
min_count = '' , examples = '' )
9911
9913
@Appender (_num_doc )
@@ -9947,7 +9949,7 @@ def mad(self, axis=None, skipna=None, level=None):
9947
9949
9948
9950
@Substitution (outname = 'compounded' ,
9949
9951
desc = "Return the compound percentage of the values for "
9950
- "the requested axis" , name1 = name , name2 = name2 ,
9952
+ "the requested axis. " , name1 = name , name2 = name2 ,
9951
9953
axis_descr = axis_descr ,
9952
9954
min_count = '' , examples = '' )
9953
9955
@Appender (_num_doc )
@@ -9977,31 +9979,31 @@ def compound(self, axis=None, skipna=None, level=None):
9977
9979
9978
9980
cls .sum = _make_min_count_stat_function (
9979
9981
cls , 'sum' , name , name2 , axis_descr ,
9980
- 'Return the sum of the values for the requested axis' ,
9982
+ 'Return the sum of the values for the requested axis. ' ,
9981
9983
nanops .nansum , _sum_examples )
9982
9984
cls .mean = _make_stat_function (
9983
9985
cls , 'mean' , name , name2 , axis_descr ,
9984
- 'Return the mean of the values for the requested axis' ,
9986
+ 'Return the mean of the values for the requested axis. ' ,
9985
9987
nanops .nanmean )
9986
9988
cls .skew = _make_stat_function (
9987
9989
cls , 'skew' , name , name2 , axis_descr ,
9988
- 'Return unbiased skew over requested axis\n Normalized by N-1' ,
9990
+ 'Return unbiased skew over requested axis\n Normalized by N-1. ' ,
9989
9991
nanops .nanskew )
9990
9992
cls .kurt = _make_stat_function (
9991
9993
cls , 'kurt' , name , name2 , axis_descr ,
9992
9994
"Return unbiased kurtosis over requested axis using Fisher's "
9993
9995
"definition of\n kurtosis (kurtosis of normal == 0.0). Normalized "
9994
- "by N-1" ,
9996
+ "by N-1. " ,
9995
9997
nanops .nankurt )
9996
9998
cls .kurtosis = cls .kurt
9997
9999
cls .prod = _make_min_count_stat_function (
9998
10000
cls , 'prod' , name , name2 , axis_descr ,
9999
- 'Return the product of the values for the requested axis' ,
10001
+ 'Return the product of the values for the requested axis. ' ,
10000
10002
nanops .nanprod , _prod_examples )
10001
10003
cls .product = cls .prod
10002
10004
cls .median = _make_stat_function (
10003
10005
cls , 'median' , name , name2 , axis_descr ,
10004
- 'Return the median of the values for the requested axis' ,
10006
+ 'Return the median of the values for the requested axis. ' ,
10005
10007
nanops .nanmedian )
10006
10008
cls .max = _make_stat_function (
10007
10009
cls , 'max' , name , name2 , axis_descr ,
0 commit comments