Skip to content

Commit 83fe8d7

Browse files
minho42datapythonista
authored andcommitted
CLN: Fix typos (mainly in docs and comments) (#27007)
1 parent cf74b02 commit 83fe8d7

File tree

99 files changed

+148
-148
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

99 files changed

+148
-148
lines changed

asv_bench/benchmarks/offset.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
pass
1010

1111
hcal = pd.tseries.holiday.USFederalHolidayCalendar()
12-
# These offests currently raise a NotImplimentedError with .apply_index()
12+
# These offsets currently raise a NotImplimentedError with .apply_index()
1313
non_apply = [pd.offsets.Day(),
1414
pd.offsets.BYearEnd(),
1515
pd.offsets.BYearBegin(),

doc/source/getting_started/comparison/comparison_with_sas.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -660,7 +660,7 @@ example, to subtract the mean for each observation by smoker group.
660660
run;
661661
662662
663-
pandas ``groubpy`` provides a ``transform`` mechanism that allows
663+
pandas ``groupby`` provides a ``transform`` mechanism that allows
664664
these type of operations to be succinctly expressed in one
665665
operation.
666666

doc/source/getting_started/comparison/comparison_with_stata.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -634,7 +634,7 @@ For example, to subtract the mean for each observation by smoker group.
634634
generate adj_total_bill = total_bill - group_bill
635635
636636
637-
pandas ``groubpy`` provides a ``transform`` mechanism that allows
637+
pandas ``groupby`` provides a ``transform`` mechanism that allows
638638
these type of operations to be succinctly expressed in one
639639
operation.
640640

doc/source/user_guide/io.rst

+3-3
Original file line numberDiff line numberDiff line change
@@ -488,7 +488,7 @@ specification:
488488
489489
.. versionadded:: 0.21.0
490490

491-
Specifying ``dtype='cateogry'`` will result in an unordered ``Categorical``
491+
Specifying ``dtype='category'`` will result in an unordered ``Categorical``
492492
whose ``categories`` are the unique values observed in the data. For more
493493
control on the categories and order, create a
494494
:class:`~pandas.api.types.CategoricalDtype` ahead of time, and pass that for
@@ -1679,7 +1679,7 @@ S3 URLs are handled as well but require installing the `S3Fs
16791679
16801680
df = pd.read_csv('s3://pandas-test/tips.csv')
16811681
1682-
If your S3 bucket requires cedentials you will need to set them as environment
1682+
If your S3 bucket requires credentials you will need to set them as environment
16831683
variables or in the ``~/.aws/credentials`` config file, refer to the `S3Fs
16841684
documentation on credentials
16851685
<https://s3fs.readthedocs.io/en/latest/#credentials>`_.
@@ -2078,7 +2078,7 @@ Dates written in nanoseconds need to be read back in nanoseconds:
20782078
20792079
json = dfj2.to_json(date_unit='ns')
20802080
2081-
# Try to parse timestamps as millseconds -> Won't Work
2081+
# Try to parse timestamps as milliseconds -> Won't Work
20822082
dfju = pd.read_json(json, date_unit='ms')
20832083
dfju
20842084

doc/source/user_guide/timeseries.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -1133,7 +1133,7 @@ Valid business hours are distinguished by whether it started from valid ``Busine
11331133
pd.Timestamp('2014-08-01 17:00') + bh
11341134
pd.Timestamp('2014-08-01 23:00') + bh
11351135
1136-
# Although 2014-08-02 is Satuaday,
1136+
# Although 2014-08-02 is Saturday,
11371137
# it is valid because it starts from 08-01 (Friday).
11381138
pd.Timestamp('2014-08-02 04:00') + bh
11391139

doc/source/whatsnew/v0.10.1.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -170,7 +170,7 @@ combined result, by using ``where`` on a selector table.
170170
df_mt, selector='df1_mt')
171171
store
172172
173-
# indiviual tables were created
173+
# individual tables were created
174174
store.select('df1_mt')
175175
store.select('df2_mt')
176176

doc/source/whatsnew/v0.14.0.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -816,7 +816,7 @@ Enhancements
816816
- Implemented ``Panel.pct_change`` (:issue:`6904`)
817817
- Added ``how`` option to rolling-moment functions to dictate how to handle resampling; :func:`rolling_max` defaults to max,
818818
:func:`rolling_min` defaults to min, and all others default to mean (:issue:`6297`)
819-
- ``CustomBuisnessMonthBegin`` and ``CustomBusinessMonthEnd`` are now available (:issue:`6866`)
819+
- ``CustomBusinessMonthBegin`` and ``CustomBusinessMonthEnd`` are now available (:issue:`6866`)
820820
- :meth:`Series.quantile` and :meth:`DataFrame.quantile` now accept an array of
821821
quantiles.
822822
- :meth:`~DataFrame.describe` now accepts an array of percentiles to include in the summary statistics (:issue:`4196`)

doc/source/whatsnew/v0.14.1.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -247,7 +247,7 @@ Bug Fixes
247247
- Bug in ``DatetimeIndex`` comparison doesn't handle ``NaT`` properly (:issue:`7529`)
248248
- Bug in passing input with ``tzinfo`` to some offsets ``apply``, ``rollforward`` or ``rollback`` resets ``tzinfo`` or raises ``ValueError`` (:issue:`7465`)
249249
- Bug in ``DatetimeIndex.to_period``, ``PeriodIndex.asobject``, ``PeriodIndex.to_timestamp`` doesn't preserve ``name`` (:issue:`7485`)
250-
- Bug in ``DatetimeIndex.to_period`` and ``PeriodIndex.to_timestanp`` handle ``NaT`` incorrectly (:issue:`7228`)
250+
- Bug in ``DatetimeIndex.to_period`` and ``PeriodIndex.to_timestamp`` handle ``NaT`` incorrectly (:issue:`7228`)
251251
- Bug in ``offsets.apply``, ``rollforward`` and ``rollback`` may return normal ``datetime`` (:issue:`7502`)
252252
- Bug in ``resample`` raises ``ValueError`` when target contains ``NaT`` (:issue:`7227`)
253253
- Bug in ``Timestamp.tz_localize`` resets ``nanosecond`` info (:issue:`7534`)

doc/source/whatsnew/v0.19.0.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -1513,7 +1513,7 @@ Bug Fixes
15131513
- Bug in ``Series`` comparison may output incorrect result if rhs contains ``NaT`` (:issue:`9005`)
15141514
- Bug in ``Series`` and ``Index`` comparison may output incorrect result if it contains ``NaT`` with ``object`` dtype (:issue:`13592`)
15151515
- Bug in ``Period`` addition raises ``TypeError`` if ``Period`` is on right hand side (:issue:`13069`)
1516-
- Bug in ``Peirod`` and ``Series`` or ``Index`` comparison raises ``TypeError`` (:issue:`13200`)
1516+
- Bug in ``Period`` and ``Series`` or ``Index`` comparison raises ``TypeError`` (:issue:`13200`)
15171517
- Bug in ``pd.set_eng_float_format()`` that would prevent NaN and Inf from formatting (:issue:`11981`)
15181518
- Bug in ``.unstack`` with ``Categorical`` dtype resets ``.ordered`` to ``True`` (:issue:`13249`)
15191519
- Clean some compile time warnings in datetime parsing (:issue:`13607`)

doc/source/whatsnew/v0.21.0.rst

+2-2
Original file line numberDiff line numberDiff line change
@@ -263,7 +263,7 @@ Now, to find prices per store/product, we can simply do:
263263
See the :ref:`documentation <groupby.pipe>` for more.
264264

265265

266-
.. _whatsnew_0210.enhancements.reanme_categories:
266+
.. _whatsnew_0210.enhancements.rename_categories:
267267

268268
``Categorical.rename_categories`` accepts a dict-like
269269
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -418,7 +418,7 @@ New Behavior, without regard to the bottleneck installation:
418418
419419
s.sum()
420420
421-
Note that this also changes the sum of an empty ``Series``. Previously this always returned 0 regardless of a ``bottlenck`` installation:
421+
Note that this also changes the sum of an empty ``Series``. Previously this always returned 0 regardless of a ``bottleneck`` installation:
422422

423423
.. code-block:: ipython
424424

doc/source/whatsnew/v0.23.0.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -276,7 +276,7 @@ To show only observed values:
276276
277277
df.groupby(['A', 'B', 'C'], observed=True).count()
278278
279-
For pivotting operations, this behavior is *already* controlled by the ``dropna`` keyword:
279+
For pivoting operations, this behavior is *already* controlled by the ``dropna`` keyword:
280280

281281
.. ipython:: python
282282

doc/source/whatsnew/v0.23.1.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ Fixed Regressions
2626
**Comparing Series with datetime.date**
2727

2828
We've reverted a 0.23.0 change to comparing a :class:`Series` holding datetimes and a ``datetime.date`` object (:issue:`21152`).
29-
In pandas 0.22 and earlier, comparing a Series holding datetimes and ``datetime.date`` objects would coerce the ``datetime.date`` to a datetime before comapring.
29+
In pandas 0.22 and earlier, comparing a Series holding datetimes and ``datetime.date`` objects would coerce the ``datetime.date`` to a datetime before comparing.
3030
This was inconsistent with Python, NumPy, and :class:`DatetimeIndex`, which never consider a datetime and ``datetime.date`` equal.
3131

3232
In 0.23.0, we unified operations between DatetimeIndex and Series, and in the process changed comparisons between a Series of datetimes and ``datetime.date`` without warning.

doc/source/whatsnew/v0.24.0.rst

+5-5
Original file line numberDiff line numberDiff line change
@@ -1061,7 +1061,7 @@ The affected cases are:
10611061
10621062
.. code-block:: ipython
10631063
1064-
# Comparison operations and arithmetic opeartions both raise ValueError.
1064+
# Comparison operations and arithmetic operations both raise ValueError.
10651065
In [6]: df == (1, 2, 3)
10661066
...
10671067
ValueError: Unable to coerce to Series, length must be 2: given 3
@@ -1324,7 +1324,7 @@ Deprecations
13241324
- :meth:`Series.clip_lower`, :meth:`Series.clip_upper`, :meth:`DataFrame.clip_lower` and :meth:`DataFrame.clip_upper` are deprecated and will be removed in a future version. Use ``Series.clip(lower=threshold)``, ``Series.clip(upper=threshold)`` and the equivalent ``DataFrame`` methods (:issue:`24203`)
13251325
- :meth:`Series.nonzero` is deprecated and will be removed in a future version (:issue:`18262`)
13261326
- Passing an integer to :meth:`Series.fillna` and :meth:`DataFrame.fillna` with ``timedelta64[ns]`` dtypes is deprecated, will raise ``TypeError`` in a future version. Use ``obj.fillna(pd.Timedelta(...))`` instead (:issue:`24694`)
1327-
- ``Series.cat.categorical``, ``Series.cat.name`` and ``Sersies.cat.index`` have been deprecated. Use the attributes on ``Series.cat`` or ``Series`` directly. (:issue:`24751`).
1327+
- ``Series.cat.categorical``, ``Series.cat.name`` and ``Series.cat.index`` have been deprecated. Use the attributes on ``Series.cat`` or ``Series`` directly. (:issue:`24751`).
13281328
- Passing a dtype without a precision like ``np.dtype('datetime64')`` or ``timedelta64`` to :class:`Index`, :class:`DatetimeIndex` and :class:`TimedeltaIndex` is now deprecated. Use the nanosecond-precision dtype instead (:issue:`24753`).
13291329

13301330
.. _whatsnew_0240.deprecations.datetimelike_int_ops:
@@ -1604,7 +1604,7 @@ Datetimelike
16041604
- Bug in :class:`DatetimeIndex` where calling ``np.array(dtindex, dtype=object)`` would incorrectly return an array of ``long`` objects (:issue:`23524`)
16051605
- Bug in :class:`Index` where passing a timezone-aware :class:`DatetimeIndex` and `dtype=object` would incorrectly raise a ``ValueError`` (:issue:`23524`)
16061606
- Bug in :class:`Index` where calling ``np.array(dtindex, dtype=object)`` on a timezone-naive :class:`DatetimeIndex` would return an array of ``datetime`` objects instead of :class:`Timestamp` objects, potentially losing nanosecond portions of the timestamps (:issue:`23524`)
1607-
- Bug in :class:`Categorical.__setitem__` not allowing setting with another ``Categorical`` when both are undordered and have the same categories, but in a different order (:issue:`24142`)
1607+
- Bug in :class:`Categorical.__setitem__` not allowing setting with another ``Categorical`` when both are unordered and have the same categories, but in a different order (:issue:`24142`)
16081608
- Bug in :func:`date_range` where using dates with millisecond resolution or higher could return incorrect values or the wrong number of values in the index (:issue:`24110`)
16091609
- Bug in :class:`DatetimeIndex` where constructing a :class:`DatetimeIndex` from a :class:`Categorical` or :class:`CategoricalIndex` would incorrectly drop timezone information (:issue:`18664`)
16101610
- Bug in :class:`DatetimeIndex` and :class:`TimedeltaIndex` where indexing with ``Ellipsis`` would incorrectly lose the index's ``freq`` attribute (:issue:`21282`)
@@ -1670,7 +1670,7 @@ Timezones
16701670
Offsets
16711671
^^^^^^^
16721672

1673-
- Bug in :class:`FY5253` where date offsets could incorrectly raise an ``AssertionError`` in arithmetic operatons (:issue:`14774`)
1673+
- Bug in :class:`FY5253` where date offsets could incorrectly raise an ``AssertionError`` in arithmetic operations (:issue:`14774`)
16741674
- Bug in :class:`DateOffset` where keyword arguments ``week`` and ``milliseconds`` were accepted and ignored. Passing these will now raise ``ValueError`` (:issue:`19398`)
16751675
- Bug in adding :class:`DateOffset` with :class:`DataFrame` or :class:`PeriodIndex` incorrectly raising ``TypeError`` (:issue:`23215`)
16761676
- Bug in comparing :class:`DateOffset` objects with non-DateOffset objects, particularly strings, raising ``ValueError`` instead of returning ``False`` for equality checks and ``True`` for not-equal checks (:issue:`23524`)
@@ -1838,7 +1838,7 @@ Groupby/Resample/Rolling
18381838
``SeriesGroupBy`` when the grouping variable only contains NaNs and numpy version < 1.13 (:issue:`21956`).
18391839
- Multiple bugs in :func:`pandas.core.window.Rolling.min` with ``closed='left'`` and a
18401840
datetime-like index leading to incorrect results and also segfault. (:issue:`21704`)
1841-
- Bug in :meth:`pandas.core.resample.Resampler.apply` when passing postiional arguments to applied func (:issue:`14615`).
1841+
- Bug in :meth:`pandas.core.resample.Resampler.apply` when passing positional arguments to applied func (:issue:`14615`).
18421842
- Bug in :meth:`Series.resample` when passing ``numpy.timedelta64`` to ``loffset`` kwarg (:issue:`7687`).
18431843
- Bug in :meth:`pandas.core.resample.Resampler.asfreq` when frequency of ``TimedeltaIndex`` is a subperiod of a new frequency (:issue:`13022`).
18441844
- Bug in :meth:`pandas.core.groupby.SeriesGroupBy.mean` when values were integral but could not fit inside of int64, overflowing instead. (:issue:`22487`)

doc/source/whatsnew/v0.25.0.rst

+2-2
Original file line numberDiff line numberDiff line change
@@ -119,7 +119,7 @@ Other Enhancements
119119
- ``Series.str`` has gained :meth:`Series.str.casefold` method to removes all case distinctions present in a string (:issue:`25405`)
120120
- :meth:`DataFrame.set_index` now works for instances of ``abc.Iterator``, provided their output is of the same length as the calling frame (:issue:`22484`, :issue:`24984`)
121121
- :meth:`DatetimeIndex.union` now supports the ``sort`` argument. The behavior of the sort parameter matches that of :meth:`Index.union` (:issue:`24994`)
122-
- :meth:`RangeIndex.union` now supports the ``sort`` argument. If ``sort=False`` an unsorted ``Int64Index`` is always returned. ``sort=None`` is the default and returns a mononotically increasing ``RangeIndex`` if possible or a sorted ``Int64Index`` if not (:issue:`24471`)
122+
- :meth:`RangeIndex.union` now supports the ``sort`` argument. If ``sort=False`` an unsorted ``Int64Index`` is always returned. ``sort=None`` is the default and returns a monotonically increasing ``RangeIndex`` if possible or a sorted ``Int64Index`` if not (:issue:`24471`)
123123
- :meth:`TimedeltaIndex.intersection` now also supports the ``sort`` keyword (:issue:`24471`)
124124
- :meth:`DataFrame.rename` now supports the ``errors`` argument to raise errors when attempting to rename nonexistent keys (:issue:`13473`)
125125
- Added :ref:`api.frame.sparse` for working with a ``DataFrame`` whose values are sparse (:issue:`25681`)
@@ -694,7 +694,7 @@ I/O
694694
- Bug in :func:`read_json` for ``orient='table'`` and float index, as it infers index dtype by default, which is not applicable because index dtype is already defined in the JSON schema (:issue:`25433`)
695695
- Bug in :func:`read_json` for ``orient='table'`` and string of float column names, as it makes a column name type conversion to :class:`Timestamp`, which is not applicable because column names are already defined in the JSON schema (:issue:`25435`)
696696
- Bug in :func:`json_normalize` for ``errors='ignore'`` where missing values in the input data, were filled in resulting ``DataFrame`` with the string ``"nan"`` instead of ``numpy.nan`` (:issue:`25468`)
697-
- :meth:`DataFrame.to_html` now raises ``TypeError`` when using an invalid type for the ``classes`` parameter instead of ``AsseertionError`` (:issue:`25608`)
697+
- :meth:`DataFrame.to_html` now raises ``TypeError`` when using an invalid type for the ``classes`` parameter instead of ``AssertionError`` (:issue:`25608`)
698698
- Bug in :meth:`DataFrame.to_string` and :meth:`DataFrame.to_latex` that would lead to incorrect output when the ``header`` keyword is used (:issue:`16718`)
699699
- Bug in :func:`read_csv` not properly interpreting the UTF8 encoded filenames on Windows on Python 3.6+ (:issue:`15086`)
700700
- Improved performance in :meth:`pandas.read_stata` and :class:`pandas.io.stata.StataReader` when converting columns that have missing values (:issue:`25772`)

doc/source/whatsnew/v0.8.0.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -77,7 +77,7 @@ Time series changes and improvements
7777
interface while enabling working with nanosecond-resolution data. Also
7878
provides :ref:`easy time zone conversions <timeseries.timezone>`.
7979
- Enhanced support for :ref:`time zones <timeseries.timezone>`. Add
80-
`tz_convert` and ``tz_lcoalize`` methods to TimeSeries and DataFrame. All
80+
`tz_convert` and ``tz_localize`` methods to TimeSeries and DataFrame. All
8181
timestamps are stored as UTC; Timestamps from DatetimeIndex objects with time
8282
zone set will be localized to local time. Time zone conversions are therefore
8383
essentially free. User needs to know very little about pytz library now; only

pandas/_libs/tslibs/fields.pyx

+1-1
Original file line numberDiff line numberDiff line change
@@ -171,7 +171,7 @@ def get_start_end_field(int64_t[:] dtindex, object field,
171171

172172
# YearBegin(), BYearBegin() use month = starting month of year.
173173
# QuarterBegin(), BQuarterBegin() use startingMonth = starting
174-
# month of year. Other offests use month, startingMonth as ending
174+
# month of year. Other offsets use month, startingMonth as ending
175175
# month of year.
176176

177177
if (freqstr[0:2] in ['MS', 'QS', 'AS']) or (

pandas/compat/numpy/__init__.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
""" support numpy compatiblitiy across versions """
1+
""" support numpy compatibility across versions """
22

33
from distutils.version import LooseVersion
44
import re

pandas/conftest.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -122,7 +122,7 @@ def observed(request):
122122
""" pass in the observed keyword to groupby for [True, False]
123123
This indicates whether categoricals should return values for
124124
values which are not in the grouper [False / None], or only values which
125-
appear in the grouper [True]. [None] is supported for future compatiblity
125+
appear in the grouper [True]. [None] is supported for future compatibility
126126
if we decide to change the default (and would need to warn if this
127127
parameter is not passed)"""
128128
return request.param

pandas/core/arrays/base.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -653,7 +653,7 @@ def factorize(
653653
-----
654654
:meth:`pandas.factorize` offers a `sort` keyword as well.
655655
"""
656-
# Impelmentor note: There are two ways to override the behavior of
656+
# Implementer note: There are two ways to override the behavior of
657657
# pandas.factorize
658658
# 1. _values_for_factorize and _from_factorize.
659659
# Specify the values passed to pandas' internal factorization

pandas/core/arrays/datetimes.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -676,7 +676,7 @@ def _format_native_types(self, na_rep='NaT', date_format=None, **kwargs):
676676
def _has_same_tz(self, other):
677677
zzone = self._timezone
678678

679-
# vzone sholdn't be None if value is non-datetime like
679+
# vzone shouldn't be None if value is non-datetime like
680680
if isinstance(other, np.datetime64):
681681
# convert to Timestamp as np.datetime64 doesn't have tz attr
682682
other = Timestamp(other)

pandas/core/arrays/integer.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ class _IntegerDtype(ExtensionDtype):
2828
An ExtensionDtype to hold a single size & kind of integer dtype.
2929
3030
These specific implementations are subclasses of the non-public
31-
_IntegerDtype. For example we have Int8Dtype to represnt signed int 8s.
31+
_IntegerDtype. For example we have Int8Dtype to represent signed int 8s.
3232
3333
The attributes name & type are set when these subclasses are created.
3434
"""

pandas/core/arrays/period.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -854,7 +854,7 @@ def dt64arr_to_periodarr(data, freq, tz=None):
854854
-------
855855
ordinals : ndarray[int]
856856
freq : Tick
857-
The frequencey extracted from the Series or DatetimeIndex if that's
857+
The frequency extracted from the Series or DatetimeIndex if that's
858858
used.
859859
860860
"""

pandas/core/arrays/sparse.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -562,7 +562,7 @@ class SparseArray(PandasObject, ExtensionArray, ExtensionOpsMixin):
562562
* 'block': Stores a `block` and `block_length` for each
563563
contiguous *span* of sparse values. This is best when
564564
sparse data tends to be clumped together, with large
565-
regsions of ``fill-value`` values between sparse values.
565+
regions of ``fill-value`` values between sparse values.
566566
* 'integer': uses an integer to store the location of
567567
each sparse value.
568568
@@ -1316,7 +1316,7 @@ def _concat_same_type(cls, to_concat):
13161316
sp_index = IntIndex(length, indices)
13171317

13181318
else:
1319-
# when concatentating block indices, we don't claim that you'll
1319+
# when concatenating block indices, we don't claim that you'll
13201320
# get an identical index as concating the values and then
13211321
# creating a new index. We don't want to spend the time trying
13221322
# to merge blocks across arrays in `to_concat`, so the resulting

pandas/core/base.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -1137,7 +1137,7 @@ def __iter__(self):
11371137
-------
11381138
iterator
11391139
"""
1140-
# We are explicity making element iterators.
1140+
# We are explicitly making element iterators.
11411141
if is_datetimelike(self._values):
11421142
return map(com.maybe_box_datetimelike, self._values)
11431143
elif is_extension_array_dtype(self._values):

pandas/core/computation/pytables.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -410,7 +410,7 @@ def visit_Assign(self, node, **kwargs):
410410
return self.visit(cmpr)
411411

412412
def visit_Subscript(self, node, **kwargs):
413-
# only allow simple suscripts
413+
# only allow simple subscripts
414414

415415
value = self.visit(node.value)
416416
slobj = self.visit(node.slice)

0 commit comments

Comments
 (0)