@@ -154,9 +154,9 @@ def group_cumprod_float64(float64_t[:, ::1] out,
154
154
155
155
Parameters
156
156
----------
157
- out : float64 array
157
+ out : np.ndarray[np. float64, ndim=2]
158
158
Array to store cumprod in.
159
- values : float64 array
159
+ values : np.ndarray[np. float64, ndim=2]
160
160
Values to take cumprod of.
161
161
labels : np.ndarray[np.intp]
162
162
Labels to group by.
@@ -211,9 +211,9 @@ def group_cumsum(numeric[:, ::1] out,
211
211
212
212
Parameters
213
213
----------
214
- out : array
214
+ out : np.ndarray[ndim=2]
215
215
Array to store cumsum in.
216
- values : array
216
+ values : np.ndarray[ndim=2]
217
217
Values to take cumsum of.
218
218
labels : np.ndarray[np.intp]
219
219
Labels to group by.
@@ -329,12 +329,15 @@ def group_fillna_indexer(ndarray[int64_t] out, ndarray[intp_t] labels,
329
329
330
330
Parameters
331
331
----------
332
- out : array of int64_t values which this method will write its results to
333
- Missing values will be written to with a value of -1
332
+ out : np.ndarray[np.uint8]
333
+ Values into which this method will write its results.
334
334
labels : np.ndarray[np.intp]
335
335
Array containing unique label for each group, with its ordering
336
336
matching up to the corresponding record in `values`.
337
- mask : array of int64_t values where a 1 indicates a missing value
337
+ values : np.ndarray[np.uint8]
338
+ Containing the truth value of each element.
339
+ mask : np.ndarray[np.uint8]
340
+ Indicating whether a value is na or not.
338
341
direction : {'ffill', 'bfill'}
339
342
Direction for fill to be applied (forwards or backwards, respectively)
340
343
limit : Consecutive values to fill before stopping, or -1 for no limit
@@ -396,12 +399,15 @@ def group_any_all(uint8_t[::1] out,
396
399
397
400
Parameters
398
401
----------
399
- out : array of values which this method will write its results to
402
+ out : np.ndarray[np.uint8]
403
+ Values into which this method will write its results.
400
404
labels : np.ndarray[np.intp]
401
405
Array containing unique label for each group, with its
402
406
ordering matching up to the corresponding record in `values`
403
- values : array containing the truth value of each element
404
- mask : array indicating whether a value is na or not
407
+ values : np.ndarray[np.uint8]
408
+ Containing the truth value of each element.
409
+ mask : np.ndarray[np.uint8]
410
+ Indicating whether a value is na or not.
405
411
val_test : {'any', 'all'}
406
412
String object dictating whether to use any or all truth testing
407
413
skipna : bool
@@ -721,14 +727,17 @@ def group_quantile(ndarray[float64_t] out,
721
727
722
728
Parameters
723
729
----------
724
- out : ndarray
730
+ out : np. ndarray[np.float64]
725
731
Array of aggregated values that will be written to.
732
+ values : np.ndarray
733
+ Array containing the values to apply the function against.
726
734
labels : ndarray[np.intp]
727
735
Array containing the unique group labels.
728
736
values : ndarray
729
737
Array containing the values to apply the function against.
730
738
q : float
731
739
The quantile value to search for.
740
+ interpolation : {'linear', 'lower', 'highest', 'nearest', 'midpoint'}
732
741
733
742
Notes
734
743
-----
@@ -1048,8 +1057,9 @@ def group_rank(float64_t[:, ::1] out,
1048
1057
1049
1058
Parameters
1050
1059
----------
1051
- out : array of float64_t values which this method will write its results to
1052
- values : array of rank_t values to be ranked
1060
+ out : np.ndarray[np.float64, ndim=2]
1061
+ Values to which this method will write its results.
1062
+ values : np.ndarray of rank_t values to be ranked
1053
1063
labels : np.ndarray[np.intp]
1054
1064
Array containing unique label for each group, with its ordering
1055
1065
matching up to the corresponding record in `values`
@@ -1058,8 +1068,7 @@ def group_rank(float64_t[:, ::1] out,
1058
1068
groupby functions.
1059
1069
is_datetimelike : bool
1060
1070
True if `values` contains datetime-like entries.
1061
- ties_method : {'average', 'min', 'max', 'first', 'dense'}, default
1062
- 'average'
1071
+ ties_method : {'average', 'min', 'max', 'first', 'dense'}, default 'average'
1063
1072
* average: average rank of group
1064
1073
* min: lowest rank in group
1065
1074
* max: highest rank in group
@@ -1120,9 +1129,9 @@ cdef group_min_max(groupby_t[:, ::1] out,
1120
1129
1121
1130
Parameters
1122
1131
----------
1123
- out : array
1132
+ out : np.ndarray[groupby_t, ndim=2]
1124
1133
Array to store result in.
1125
- counts : int64 array
1134
+ counts : np.ndarray[ int64]
1126
1135
Input as a zeroed array, populated by group sizes during algorithm
1127
1136
values : array
1128
1137
Values to find column-wise min/max of.
@@ -1241,9 +1250,9 @@ def group_cummin_max(groupby_t[:, ::1] out,
1241
1250
1242
1251
Parameters
1243
1252
----------
1244
- out : array
1253
+ out : np.ndarray[groupby_t, ndim=2]
1245
1254
Array to store cummin/max in.
1246
- values : array
1255
+ values : np.ndarray[groupby_t, ndim=2]
1247
1256
Values to take cummin/max of.
1248
1257
labels : np.ndarray[np.intp]
1249
1258
Labels to group by.
0 commit comments