Skip to content

GH456 First attempt GroupBy.transform improved typing #1242

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Jun 13, 2025
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 38 additions & 0 deletions pandas-stubs/_typing.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -925,6 +925,44 @@ GroupByObjectNonScalar: TypeAlias = (
| list[Grouper]
)
GroupByObject: TypeAlias = Scalar | Index | GroupByObjectNonScalar | Series
GroupByFuncStrs: TypeAlias = Literal[
# Reduction/aggregation functions
"all",
"any",
"corrwith",
"count",
"first",
"idxmax",
"idxmin",
"last",
"max",
"mean",
"median",
"min",
"nunique",
"prod",
"quantile",
"sem",
"size",
"skew",
"std",
"sum",
"var",
# Transformation functions
"bfill",
"cumcount",
"cummax",
"cummin",
"cumprod",
"cumsum",
"diff",
"ffill",
"fillna",
"ngroup",
"pct_change",
"rank",
"shift",
]

StataDateFormat: TypeAlias = Literal[
"tc",
Expand Down
36 changes: 30 additions & 6 deletions pandas-stubs/core/groupby/generic.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ from collections.abc import (
)
from typing import (
Any,
Concatenate,
Generic,
Literal,
NamedTuple,
Expand All @@ -31,15 +32,18 @@ from typing_extensions import (
from pandas._libs.tslibs.timestamps import Timestamp
from pandas._typing import (
S1,
S2,
AggFuncTypeBase,
AggFuncTypeFrame,
ByT,
CorrelationMethod,
Dtype,
GroupByFuncStrs,
IndexLabel,
Level,
ListLike,
NsmallestNlargestKeep,
P,
Scalar,
TakeIndexer,
WindowingEngine,
Expand Down Expand Up @@ -72,14 +76,24 @@ class SeriesGroupBy(GroupBy[Series[S1]], Generic[S1, ByT]):
**kwargs,
) -> Series: ...
agg = aggregate
@overload
def transform(
self,
func: Callable | str,
*args,
func: Callable[Concatenate[Series[S1], P], Series[S2]],
*args: Any,
engine: WindowingEngine = ...,
engine_kwargs: WindowingEngineKwargs = ...,
**kwargs,
**kwargs: Any,
) -> Series[S2]: ...
@overload
def transform(
self,
func: Callable,
*args: Any,
**kwargs: Any,
) -> Series: ...
@overload
def transform(self, func: GroupByFuncStrs, *args, **kwargs) -> Series: ...
def filter(
self, func: Callable | str, dropna: bool = ..., *args, **kwargs
) -> Series: ...
Expand Down Expand Up @@ -206,14 +220,24 @@ class DataFrameGroupBy(GroupBy[DataFrame], Generic[ByT, _TT]):
**kwargs,
) -> DataFrame: ...
agg = aggregate
@overload
def transform(
self,
func: Callable | str,
*args,
func: Callable[Concatenate[DataFrame, P], DataFrame],
*args: Any,
engine: WindowingEngine = ...,
engine_kwargs: WindowingEngineKwargs = ...,
**kwargs,
**kwargs: Any,
) -> DataFrame: ...
@overload
def transform(
self,
func: Callable,
*args: Any,
**kwargs: Any,
) -> DataFrame: ...
@overload
def transform(self, func: GroupByFuncStrs, *args, **kwargs) -> DataFrame: ...
def filter(
self, func: Callable, dropna: bool = ..., *args, **kwargs
) -> DataFrame: ...
Expand Down
18 changes: 18 additions & 0 deletions tests/test_series.py
Original file line number Diff line number Diff line change
Expand Up @@ -1084,6 +1084,24 @@ def test_types_groupby_agg() -> None:
)


def test_types_groupby_transform() -> None:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think you should add tests for two of the string transform arguments (e.g., "mean", "first")

s: pd.Series[int] = pd.Series([4, 2, 1, 8], index=["a", "b", "a", "b"])

def transform_func(
x: pd.Series[int], pos_arg: bool, kw_arg: str
) -> pd.Series[float]:
return x / (2.0 if pos_arg else 1.0)

check(
assert_type(
s.groupby(lambda x: x).transform(transform_func, True, kw_arg="foo"),
"pd.Series[float]",
),
pd.Series,
float,
)


def test_types_groupby_aggregate() -> None:
s = pd.Series([4, 2, 1, 8], index=["a", "b", "a", "b"])
check(assert_type(s.groupby(level=0).aggregate("sum"), pd.Series), pd.Series)
Expand Down