Skip to content

update benchmarking guide with latest results with vllm v1 #559

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 28, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified site-src/performance/benchmark/example-bar-chart.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
7 changes: 3 additions & 4 deletions site-src/performance/benchmark/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ The LPG benchmark tool works by sending traffic to the specified target IP and p
# Get gateway IP
GW_IP=$(kubectl get gateway/inference-gateway -o jsonpath='{.status.addresses[0].value}')
# Get LoadBalancer k8s service IP
SVC_IP=$(kubectl get gateway/inference-gateway -o jsonpath='{.status.addresses[0].value}')
SVC_IP=$(kubectl get service/vllm-llama2-7b -o jsonpath='{.status.loadBalancer.ingress[0].ip}')

echo $GW_IP
echo $SVC_IP
Expand All @@ -62,8 +62,7 @@ the script below will watch for that log line and then start downloading results
```bash
benchmark_id='my-benchmark' ./tools/benchmark/download-benchmark-results.bash
```

1. After the script finishes, you should see benchmark results under `./tools/benchmark/output/default-run/my-benchmark/results/json` folder.
1. After the script finishes, you should see benchmark results under `./tools/benchmark/output/default-run/my-benchmark/results/json` folder. Here is a [sample json file](./sample.json).

### Tips

Expand Down Expand Up @@ -93,6 +92,6 @@ This guide shows how to run the jupyter notebook using vscode.
```

1. Open the notebook `./tools/benchmark/benchmark.ipynb`, and run each cell. At the end you should
see a bar chart like below:
see a bar chart like below where **"ie"** represents inference extension. This chart is generated using this benchmarking tool with 6 vLLM (v1) model servers (H100 80 GB), [llama2-7b](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/tree/main) and the [ShareGPT dataset](https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json).

![alt text](example-bar-chart.png)
1 change: 1 addition & 0 deletions site-src/performance/benchmark/sample.json
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
{"metrics": {"num_prompts_attempted": 59999, "num_prompts_succeeded": 59999, "request_rate": 200.0, "server_metrics": {}, "benchmark_time": 377.69680404663086, "throughput_rps": 158.85757929948576, "throughput": 35786.07723228514, "total_output_token": 13516287, "output_tokens_per_min": 2147164.6339371083, "total_input_tokens": 15092072, "input_tokens_per_min": 2397490.024533549, "total_tokens": 28608359, "tokens_per_min": 4544654.658470658, "avg_per_token_latency": 0.038136584066158385, "median_per_token_latency": 0.03260710797991071, "sd_per_token_latency": 0.039995399094383204, "min_per_token_latency": 0.00010268625128206123, "max_per_token_latency": 0.8718070238828659, "p90_per_token_latency": 0.07052694590421603, "p99_per_token_latency": 0.19175863699585777, "avg_latency": 13490.14784723948, "median_latency": 10904.660940170288, "sd_latency": 10759.461472867813, "min_latency": 53.10511589050293, "max_latency": 55610.99076271057, "p90_latency": 28706.796979904175, "p99_latency": 45658.41965198513, "avg_per_output_token_latency": 148.97623456610614, "median_per_output_token_latency": 60.334928053662296, "sd_per_output_token_latency": 232.28505133364948, "min_per_output_token_latency": 7.44791825612386, "max_per_output_token_latency": 3108.849883079529, "p90_per_output_token_latency": 393.8944477023501, "p99_per_output_token_latency": 1193.081065813697, "avg_input_len": 251.53872564542743, "median_input_len": 109.0, "sd_input_len": 281.6475735479433, "min_input_len": 4.0, "max_input_len": 1024.0, "p90_input_len": 714.0, "p99_input_len": 987.0, "avg_output_len": 225.27520458674311, "median_output_len": 144.0, "sd_output_len": 234.48900674005114, "min_output_len": 3.0, "max_output_len": 1025.0, "p90_output_len": 564.0, "p99_output_len": 948.0, "ClientConnectorError": 0, "TimeoutError": 0, "ContentTypeError": 1, "ClientOSError": 0, "ServerDisconnectedError": 0, "unknown_error": 0}, "dimensions": {"date": "20250328-043623", "backend": "vllm", "model_id": "meta-llama/Llama-2-7b-hf", "tokenizer_id": "meta-llama/Llama-2-7b-hf"}, "config": {"model": "meta-llama/Llama-2-7b-hf", "num_models": 1, "model_server": "vllm", "start_time": {"seconds": 1743136583, "nanos": 238149000}}, "summary_stats": {"stats": [{"request_rate": 200.0, "request_latency": {"mean": 13490.14784723948, "median": 10904.660940170288, "sd": 10759.461472867813, "min": 53.10511589050293, "max": 55610.99076271057, "p90": 28706.796979904175, "p99": 45658.41965198513}, "throughput": {"mean": 35786.07723228514}, "input_length": {"mean": 251.53872564542743, "median": 109.0, "sd": 281.6475735479433, "min": 4.0, "max": 1024.0, "p90": 714.0, "p99": 987.0}, "output_length": {"mean": 225.27520458674311, "median": 144.0, "sd": 234.48900674005114, "min": 3.0, "max": 1025.0, "p90": 564.0, "p99": 948.0}, "tpot": {"mean": 148.97623456610614, "median": 60.334928053662296, "sd": 232.28505133364948, "min": 7.44791825612386, "max": 3108.849883079529, "p90": 393.8944477023501, "p99": 1193.081065813697}, "model_server_metrics": []}]}}