|
| 1 | +import warnings |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import pytest |
| 5 | + |
| 6 | +from pandas import DataFrame, Series, concat, isna, notna |
| 7 | +import pandas._testing as tm |
| 8 | + |
| 9 | +import pandas.tseries.offsets as offsets |
| 10 | + |
| 11 | + |
| 12 | +def f(x): |
| 13 | + # suppress warnings about empty slices, as we are deliberately testing |
| 14 | + # with a 0-length Series |
| 15 | + with warnings.catch_warnings(): |
| 16 | + warnings.filterwarnings( |
| 17 | + "ignore", |
| 18 | + message=".*(empty slice|0 for slice).*", |
| 19 | + category=RuntimeWarning, |
| 20 | + ) |
| 21 | + return x[np.isfinite(x)].mean() |
| 22 | + |
| 23 | + |
| 24 | +def test_series(raw, series): |
| 25 | + result = series.rolling(50).apply(f, raw=raw) |
| 26 | + assert isinstance(result, Series) |
| 27 | + tm.assert_almost_equal(result.iloc[-1], np.mean(series[-50:])) |
| 28 | + |
| 29 | + |
| 30 | +def test_frame(raw, frame): |
| 31 | + result = frame.rolling(50).apply(f, raw=raw) |
| 32 | + assert isinstance(result, DataFrame) |
| 33 | + tm.assert_series_equal( |
| 34 | + result.iloc[-1, :], |
| 35 | + frame.iloc[-50:, :].apply(np.mean, axis=0, raw=raw), |
| 36 | + check_names=False, |
| 37 | + ) |
| 38 | + |
| 39 | + |
| 40 | +def test_time_rule_series(raw, series): |
| 41 | + win = 25 |
| 42 | + minp = 10 |
| 43 | + ser = series[::2].resample("B").mean() |
| 44 | + series_result = ser.rolling(window=win, min_periods=minp).apply(f, raw=raw) |
| 45 | + last_date = series_result.index[-1] |
| 46 | + prev_date = last_date - 24 * offsets.BDay() |
| 47 | + |
| 48 | + trunc_series = series[::2].truncate(prev_date, last_date) |
| 49 | + tm.assert_almost_equal(series_result[-1], np.mean(trunc_series)) |
| 50 | + |
| 51 | + |
| 52 | +def test_time_rule_frame(raw, frame): |
| 53 | + win = 25 |
| 54 | + minp = 10 |
| 55 | + frm = frame[::2].resample("B").mean() |
| 56 | + frame_result = frm.rolling(window=win, min_periods=minp).apply(f, raw=raw) |
| 57 | + last_date = frame_result.index[-1] |
| 58 | + prev_date = last_date - 24 * offsets.BDay() |
| 59 | + |
| 60 | + trunc_frame = frame[::2].truncate(prev_date, last_date) |
| 61 | + tm.assert_series_equal( |
| 62 | + frame_result.xs(last_date), |
| 63 | + trunc_frame.apply(np.mean, raw=raw), |
| 64 | + check_names=False, |
| 65 | + ) |
| 66 | + |
| 67 | + |
| 68 | +def test_nans(raw): |
| 69 | + obj = Series(np.random.randn(50)) |
| 70 | + obj[:10] = np.NaN |
| 71 | + obj[-10:] = np.NaN |
| 72 | + |
| 73 | + result = obj.rolling(50, min_periods=30).apply(f, raw=raw) |
| 74 | + tm.assert_almost_equal(result.iloc[-1], np.mean(obj[10:-10])) |
| 75 | + |
| 76 | + # min_periods is working correctly |
| 77 | + result = obj.rolling(20, min_periods=15).apply(f, raw=raw) |
| 78 | + assert isna(result.iloc[23]) |
| 79 | + assert not isna(result.iloc[24]) |
| 80 | + |
| 81 | + assert not isna(result.iloc[-6]) |
| 82 | + assert isna(result.iloc[-5]) |
| 83 | + |
| 84 | + obj2 = Series(np.random.randn(20)) |
| 85 | + result = obj2.rolling(10, min_periods=5).apply(f, raw=raw) |
| 86 | + assert isna(result.iloc[3]) |
| 87 | + assert notna(result.iloc[4]) |
| 88 | + |
| 89 | + result0 = obj.rolling(20, min_periods=0).apply(f, raw=raw) |
| 90 | + result1 = obj.rolling(20, min_periods=1).apply(f, raw=raw) |
| 91 | + tm.assert_almost_equal(result0, result1) |
| 92 | + |
| 93 | + |
| 94 | +@pytest.mark.parametrize("minp", [0, 99, 100]) |
| 95 | +def test_min_periods(raw, series, minp): |
| 96 | + result = series.rolling(len(series) + 1, min_periods=minp).apply(f, raw=raw) |
| 97 | + expected = series.rolling(len(series), min_periods=minp).apply(f, raw=raw) |
| 98 | + nan_mask = isna(result) |
| 99 | + tm.assert_series_equal(nan_mask, isna(expected)) |
| 100 | + |
| 101 | + nan_mask = ~nan_mask |
| 102 | + tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) |
| 103 | + |
| 104 | + |
| 105 | +def test_center(raw): |
| 106 | + obj = Series(np.random.randn(50)) |
| 107 | + obj[:10] = np.NaN |
| 108 | + obj[-10:] = np.NaN |
| 109 | + |
| 110 | + result = obj.rolling(20, min_periods=15, center=True).apply(f, raw=raw) |
| 111 | + expected = ( |
| 112 | + concat([obj, Series([np.NaN] * 9)]) |
| 113 | + .rolling(20, min_periods=15) |
| 114 | + .apply(f, raw=raw)[9:] |
| 115 | + .reset_index(drop=True) |
| 116 | + ) |
| 117 | + tm.assert_series_equal(result, expected) |
| 118 | + |
| 119 | + |
| 120 | +def test_center_reindex_series(raw, series): |
| 121 | + # shifter index |
| 122 | + s = [f"x{x:d}" for x in range(12)] |
| 123 | + minp = 10 |
| 124 | + |
| 125 | + series_xp = ( |
| 126 | + series.reindex(list(series.index) + s) |
| 127 | + .rolling(window=25, min_periods=minp) |
| 128 | + .apply(f, raw=raw) |
| 129 | + .shift(-12) |
| 130 | + .reindex(series.index) |
| 131 | + ) |
| 132 | + series_rs = series.rolling(window=25, min_periods=minp, center=True).apply( |
| 133 | + f, raw=raw |
| 134 | + ) |
| 135 | + tm.assert_series_equal(series_xp, series_rs) |
| 136 | + |
| 137 | + |
| 138 | +def test_center_reindex_frame(raw, frame): |
| 139 | + # shifter index |
| 140 | + s = [f"x{x:d}" for x in range(12)] |
| 141 | + minp = 10 |
| 142 | + |
| 143 | + frame_xp = ( |
| 144 | + frame.reindex(list(frame.index) + s) |
| 145 | + .rolling(window=25, min_periods=minp) |
| 146 | + .apply(f, raw=raw) |
| 147 | + .shift(-12) |
| 148 | + .reindex(frame.index) |
| 149 | + ) |
| 150 | + frame_rs = frame.rolling(window=25, min_periods=minp, center=True).apply(f, raw=raw) |
| 151 | + tm.assert_frame_equal(frame_xp, frame_rs) |
0 commit comments