Skip to content

Adding ASL (asymmetric loss) #255

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Oct 17, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion timm/loss/__init__.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
from .cross_entropy import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from .jsd import JsdCrossEntropy
from .jsd import JsdCrossEntropy
from .asymmetric_loss import AsymmetricLossMultiLabel, AsymmetricLossSingleLabel
97 changes: 97 additions & 0 deletions timm/loss/asymmetric_loss.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
import torch
import torch.nn as nn


class AsymmetricLossMultiLabel(nn.Module):
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False):
super(AsymmetricLossMultiLabel, self).__init__()

self.gamma_neg = gamma_neg
self.gamma_pos = gamma_pos
self.clip = clip
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
self.eps = eps

def forward(self, x, y):
""""
Parameters
----------
x: input logits
y: targets (multi-label binarized vector)
"""

# Calculating Probabilities
x_sigmoid = torch.sigmoid(x)
xs_pos = x_sigmoid
xs_neg = 1 - x_sigmoid

# Asymmetric Clipping
if self.clip is not None and self.clip > 0:
xs_neg = (xs_neg + self.clip).clamp(max=1)

# Basic CE calculation
los_pos = y * torch.log(xs_pos.clamp(min=self.eps))
los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps))
loss = los_pos + los_neg

# Asymmetric Focusing
if self.gamma_neg > 0 or self.gamma_pos > 0:
if self.disable_torch_grad_focal_loss:
torch._C.set_grad_enabled(False)
pt0 = xs_pos * y
pt1 = xs_neg * (1 - y) # pt = p if t > 0 else 1-p
pt = pt0 + pt1
one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y)
one_sided_w = torch.pow(1 - pt, one_sided_gamma)
if self.disable_torch_grad_focal_loss:
torch._C.set_grad_enabled(True)
loss *= one_sided_w

return -loss.sum()


class AsymmetricLossSingleLabel(nn.Module):
def __init__(self, gamma_pos=1, gamma_neg=4, eps: float = 0.1, reduction='mean'):
super(AsymmetricLossSingleLabel, self).__init__()

self.eps = eps
self.logsoftmax = nn.LogSoftmax(dim=-1)
self.targets_classes = [] # prevent gpu repeated memory allocation
self.gamma_pos = gamma_pos
self.gamma_neg = gamma_neg
self.reduction = reduction

def forward(self, inputs, target, reduction=None):
""""
Parameters
----------
x: input logits
y: targets (1-hot vector)
"""

num_classes = inputs.size()[-1]
log_preds = self.logsoftmax(inputs)
self.targets_classes = torch.zeros_like(inputs).scatter_(1, target.long().unsqueeze(1), 1)

# ASL weights
targets = self.targets_classes
anti_targets = 1 - targets
xs_pos = torch.exp(log_preds)
xs_neg = 1 - xs_pos
xs_pos = xs_pos * targets
xs_neg = xs_neg * anti_targets
asymmetric_w = torch.pow(1 - xs_pos - xs_neg,
self.gamma_pos * targets + self.gamma_neg * anti_targets)
log_preds = log_preds * asymmetric_w

if self.eps > 0: # label smoothing
self.targets_classes.mul_(1 - self.eps).add_(self.eps / num_classes)

# loss calculation
loss = - self.targets_classes.mul(log_preds)

loss = loss.sum(dim=-1)
if self.reduction == 'mean':
loss = loss.mean()

return loss