Skip to content

fix: use public pandas APIs where possible #60

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Jan 26, 2022
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 5 additions & 11 deletions db_dtypes/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,13 +22,7 @@
import numpy
import packaging.version
import pandas
import pandas.compat.numpy.function
import pandas.core.algorithms
import pandas.core.arrays
import pandas.core.dtypes.base
import pandas.core.dtypes.dtypes
import pandas.core.dtypes.generic
import pandas.core.nanops
import pandas.api.extensions
import pyarrow
import pyarrow.compute

Expand All @@ -44,7 +38,7 @@
pandas_release = packaging.version.parse(pandas.__version__).release


@pandas.core.dtypes.dtypes.register_extension_dtype
@pandas.api.extensions.register_extension_dtype
class TimeDtype(core.BaseDatetimeDtype):
"""
Extension dtype for time data.
Expand Down Expand Up @@ -113,7 +107,7 @@ def _datetime(
.as_py()
)

if scalar is None:
if pandas.isna(scalar):
return None
if isinstance(scalar, datetime.time):
return pandas.Timestamp(
Expand Down Expand Up @@ -194,7 +188,7 @@ def __arrow_array__(self, type=None):
)


@pandas.core.dtypes.dtypes.register_extension_dtype
@pandas.api.extensions.register_extension_dtype
class DateDtype(core.BaseDatetimeDtype):
"""
Extension dtype for time data.
Expand Down Expand Up @@ -238,7 +232,7 @@ def _datetime(
if isinstance(scalar, (pyarrow.Date32Scalar, pyarrow.Date64Scalar)):
scalar = scalar.as_py()

if scalar is None:
if pandas.isna(scalar):
return None
elif isinstance(scalar, datetime.date):
return pandas.Timestamp(
Expand Down
80 changes: 18 additions & 62 deletions db_dtypes/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,20 +12,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Optional, Sequence
from typing import Optional

import numpy
import pandas
from pandas._libs import NaT
from pandas import NaT
import pandas.api.extensions
import pandas.compat.numpy.function
import pandas.core.algorithms
import pandas.core.arrays
import pandas.core.dtypes.base
from pandas.core.dtypes.common import is_dtype_equal, is_list_like, pandas_dtype
import pandas.core.dtypes.dtypes
import pandas.core.dtypes.generic
import pandas.core.nanops
from pandas.api.types import is_dtype_equal, is_list_like, pandas_dtype

from db_dtypes import pandas_backports

Expand Down Expand Up @@ -107,42 +100,11 @@ def isna(self):
return pandas.isna(self._ndarray)

def _validate_scalar(self, value):
if pandas.isna(value):
return None

if not isinstance(value, self.dtype.type):
raise ValueError(value)

return value

def take(
self,
indices: Sequence[int],
*,
allow_fill: bool = False,
fill_value: Any = None,
):
indices = numpy.asarray(indices, dtype=numpy.intp)
data = self._ndarray
if allow_fill:
fill_value = self._validate_scalar(fill_value)
fill_value = (
numpy.datetime64() if fill_value is None else self._datetime(fill_value)
)
if (indices < -1).any():
raise ValueError(
"take called with negative indexes other than -1,"
" when a fill value is provided."
)
out = data.take(indices)
if allow_fill:
out[indices == -1] = fill_value

return self.__class__(out)

# TODO: provide implementations of dropna, fillna, unique,
# factorize, argsort, searchsoeted for better performance over
# abstract implementations.
"""
Validate and convert a scalar value to datetime64[ns] for storage in
backing NumPy array.
"""
return self._datetime(value)

def any(
self,
Expand All @@ -152,10 +114,8 @@ def any(
keepdims: bool = False,
skipna: bool = True,
):
pandas.compat.numpy.function.validate_any(
(), {"out": out, "keepdims": keepdims}
)
result = pandas.core.nanops.nanany(self._ndarray, axis=axis, skipna=skipna)
pandas_backports.numpy_validate_any((), {"out": out, "keepdims": keepdims})
result = pandas_backports.nanany(self._ndarray, axis=axis, skipna=skipna)
return result

def all(
Expand All @@ -166,22 +126,20 @@ def all(
keepdims: bool = False,
skipna: bool = True,
):
pandas.compat.numpy.function.validate_all(
(), {"out": out, "keepdims": keepdims}
)
result = pandas.core.nanops.nanall(self._ndarray, axis=axis, skipna=skipna)
pandas_backports.numpy_validate_all((), {"out": out, "keepdims": keepdims})
result = pandas_backports.nanall(self._ndarray, axis=axis, skipna=skipna)
return result

def min(self, *, axis: Optional[int] = None, skipna: bool = True, **kwargs):
pandas.compat.numpy.function.validate_min((), kwargs)
result = pandas.core.nanops.nanmin(
pandas_backports.numpy_validate_min((), kwargs)
result = pandas_backports.nanmin(
values=self._ndarray, axis=axis, mask=self.isna(), skipna=skipna
)
return self._box_func(result)

def max(self, *, axis: Optional[int] = None, skipna: bool = True, **kwargs):
pandas.compat.numpy.function.validate_max((), kwargs)
result = pandas.core.nanops.nanmax(
pandas_backports.numpy_validate_max((), kwargs)
result = pandas_backports.nanmax(
values=self._ndarray, axis=axis, mask=self.isna(), skipna=skipna
)
return self._box_func(result)
Expand All @@ -197,11 +155,9 @@ def median(
keepdims: bool = False,
skipna: bool = True,
):
pandas.compat.numpy.function.validate_median(
pandas_backports.numpy_validate_median(
(),
{"out": out, "overwrite_input": overwrite_input, "keepdims": keepdims},
)
result = pandas.core.nanops.nanmedian(
self._ndarray, axis=axis, skipna=skipna
)
result = pandas_backports.nanmedian(self._ndarray, axis=axis, skipna=skipna)
return self._box_func(result)
45 changes: 43 additions & 2 deletions db_dtypes/pandas_backports.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,15 +20,32 @@
"""

import operator
from typing import Any

import numpy
import packaging.version
import pandas
from pandas._libs.lib import is_integer
from pandas.api.types import is_integer
import pandas.compat.numpy.function
import pandas.core.nanops


pandas_release = packaging.version.parse(pandas.__version__).release

# Create aliases for private methods in case they move in a future version.
nanall = pandas.core.nanops.nanall
nanany = pandas.core.nanops.nanany
nanmax = pandas.core.nanops.nanmax
nanmin = pandas.core.nanops.nanmin
numpy_validate_all = pandas.compat.numpy.function.validate_all
numpy_validate_any = pandas.compat.numpy.function.validate_any
numpy_validate_max = pandas.compat.numpy.function.validate_max
numpy_validate_min = pandas.compat.numpy.function.validate_min

if pandas_release >= (1, 2):
nanmedian = pandas.core.nanops.nanmedian
numpy_validate_median = pandas.compat.numpy.function.validate_median


def import_default(module_name, force=False, default=None):
"""
Expand All @@ -55,7 +72,7 @@ def import_default(module_name, force=False, default=None):
return getattr(module, name, default)


@import_default("pandas.core.arraylike")
@import_default("pandas.core.arraylike") # TODO: is there a public API for this?
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oops, need to handle this TODO

class OpsMixin:
def _cmp_method(self, other, op): # pragma: NO COVER
return NotImplemented
Expand All @@ -81,6 +98,8 @@ def __ge__(self, other):
__add__ = __radd__ = __sub__ = lambda self, other: NotImplemented


# TODO: use public API if possible
# https://github.com/pandas-dev/pandas/pull/45544/files
@import_default("pandas.core.arrays._mixins", pandas_release < (1, 3))
class NDArrayBackedExtensionArray(pandas.core.arrays.base.ExtensionArray):

Expand Down Expand Up @@ -130,6 +149,28 @@ def copy(self):
def repeat(self, n):
return self.__class__(self._ndarray.repeat(n), self._dtype)

def take(
self,
indices,
*,
allow_fill: bool = False,
fill_value: Any = None,
axis: int = 0,
):
from pandas.core.algorithms import take

if allow_fill:
fill_value = self._validate_scalar(fill_value)

new_data = take(
self._ndarray,
indices,
allow_fill=allow_fill,
fill_value=fill_value,
axis=axis,
)
return self._from_backing_data(new_data)

@classmethod
def _concat_same_type(cls, to_concat, axis=0):
dtypes = {str(x.dtype) for x in to_concat}
Expand Down