Skip to content

feat: rename dbtime and dbdate dtypes to avoid future conflicts with pandas #32

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Oct 14, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions db_dtypes/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,8 +34,8 @@
from db_dtypes import core


date_dtype_name = "date"
time_dtype_name = "time"
date_dtype_name = "dbdate"
time_dtype_name = "dbtime"

pandas_release = packaging.version.parse(pandas.__version__).release

Expand Down
12 changes: 3 additions & 9 deletions samples/snippets/pandas_date_and_time.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,16 +14,13 @@


def pandas_date_and_time():
# fmt: off
# [START bigquery_date_create]

import datetime
import pandas as pd
import db_dtypes # noqa import to register dtypes

dates = pd.Series(
[datetime.date(2021, 9, 17), '2021-9-18'],
dtype='date')
dates = pd.Series([datetime.date(2021, 9, 17), "2021-9-18"], dtype="dbdate")

# [END bigquery_date_create]
# [START bigquery_date_as_datetime]
Expand All @@ -33,7 +30,7 @@ def pandas_date_and_time():
# [END bigquery_date_as_datetime]
# [START bigquery_date_sub]

dates2 = pd.Series(['2021-1-1', '2021-1-2'], dtype='date')
dates2 = pd.Series(["2021-1-1", "2021-1-2"], dtype="dbdate")
diffs = dates - dates2

# [END bigquery_date_sub]
Expand All @@ -46,9 +43,7 @@ def pandas_date_and_time():
# [END bigquery_date_do]
# [START bigquery_time_create]

times = pd.Series(
[datetime.time(1, 2, 3, 456789), '12:00:00.6'],
dtype='time')
times = pd.Series([datetime.time(1, 2, 3, 456789), "12:00:00.6"], dtype="dbtime")

# [END bigquery_time_create]
# [START bigquery_time_as_timedelta]
Expand All @@ -67,7 +62,6 @@ def pandas_date_and_time():
combined = dates + times

# [END bigquery_combine2_date_time]
# fmt: on

return (
dates,
Expand Down
4 changes: 2 additions & 2 deletions samples/snippets/pandas_date_and_time_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ def test_pandas_date_and_time():
combined0,
) = pandas_date_and_time()

assert str(dates.dtype) == "date"
assert str(dates.dtype) == "dbdate"
assert list(dates) == [datetime.date(2021, 9, 17), datetime.date(2021, 9, 18)]

assert np.array_equal(
Expand All @@ -45,7 +45,7 @@ def test_pandas_date_and_time():
assert np.array_equal(after, dates.astype("object") + do)
assert np.array_equal(before, dates.astype("object") - do)

assert str(times.dtype) == "time"
assert str(times.dtype) == "dbtime"
assert list(times) == [
datetime.time(1, 2, 3, 456789),
datetime.time(12, 0, 0, 600000),
Expand Down
43 changes: 26 additions & 17 deletions tests/unit/test_arrow.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,14 +25,14 @@
@pytest.mark.parametrize(
("series", "expected"),
(
(pandas.Series([], dtype="date"), pyarrow.array([], type=pyarrow.date32())),
(pandas.Series([], dtype="dbdate"), pyarrow.array([], type=pyarrow.date32())),
(
pandas.Series([None, None, None], dtype="date"),
pandas.Series([None, None, None], dtype="dbdate"),
pyarrow.array([None, None, None], type=pyarrow.date32()),
),
(
pandas.Series(
[dt.date(2021, 9, 27), None, dt.date(2011, 9, 27)], dtype="date"
[dt.date(2021, 9, 27), None, dt.date(2011, 9, 27)], dtype="dbdate"
),
pyarrow.array(
[dt.date(2021, 9, 27), None, dt.date(2011, 9, 27)],
Expand All @@ -42,21 +42,25 @@
(
pandas.Series(
[dt.date(1677, 9, 22), dt.date(1970, 1, 1), dt.date(2262, 4, 11)],
dtype="date",
dtype="dbdate",
),
pyarrow.array(
[dt.date(1677, 9, 22), dt.date(1970, 1, 1), dt.date(2262, 4, 11)],
type=pyarrow.date32(),
),
),
(pandas.Series([], dtype="time"), pyarrow.array([], type=pyarrow.time64("ns"))),
(
pandas.Series([None, None, None], dtype="time"),
pandas.Series([], dtype="dbtime"),
pyarrow.array([], type=pyarrow.time64("ns")),
),
(
pandas.Series([None, None, None], dtype="dbtime"),
pyarrow.array([None, None, None], type=pyarrow.time64("ns")),
),
(
pandas.Series(
[dt.time(0, 0, 0, 0), None, dt.time(23, 59, 59, 999_999)], dtype="time"
[dt.time(0, 0, 0, 0), None, dt.time(23, 59, 59, 999_999)],
dtype="dbtime",
),
pyarrow.array(
[dt.time(0, 0, 0, 0), None, dt.time(23, 59, 59, 999_999)],
Expand All @@ -70,7 +74,7 @@
dt.time(12, 30, 15, 125_000),
dt.time(23, 59, 59, 999_999),
],
dtype="time",
dtype="dbtime",
),
pyarrow.array(
[
Expand All @@ -91,14 +95,14 @@ def test_to_arrow(series, expected):
@pytest.mark.parametrize(
("series", "expected"),
(
(pandas.Series([], dtype="date"), pyarrow.array([], type=pyarrow.date64())),
(pandas.Series([], dtype="dbdate"), pyarrow.array([], type=pyarrow.date64())),
(
pandas.Series([None, None, None], dtype="date"),
pandas.Series([None, None, None], dtype="dbdate"),
pyarrow.array([None, None, None], type=pyarrow.date64()),
),
(
pandas.Series(
[dt.date(2021, 9, 27), None, dt.date(2011, 9, 27)], dtype="date"
[dt.date(2021, 9, 27), None, dt.date(2011, 9, 27)], dtype="dbdate"
),
pyarrow.array(
[dt.date(2021, 9, 27), None, dt.date(2011, 9, 27)],
Expand All @@ -108,21 +112,25 @@ def test_to_arrow(series, expected):
(
pandas.Series(
[dt.date(1677, 9, 22), dt.date(1970, 1, 1), dt.date(2262, 4, 11)],
dtype="date",
dtype="dbdate",
),
pyarrow.array(
[dt.date(1677, 9, 22), dt.date(1970, 1, 1), dt.date(2262, 4, 11)],
type=pyarrow.date64(),
),
),
(pandas.Series([], dtype="time"), pyarrow.array([], type=pyarrow.time32("ms"))),
(
pandas.Series([None, None, None], dtype="time"),
pandas.Series([], dtype="dbtime"),
pyarrow.array([], type=pyarrow.time32("ms")),
),
(
pandas.Series([None, None, None], dtype="dbtime"),
pyarrow.array([None, None, None], type=pyarrow.time32("ms")),
),
(
pandas.Series(
[dt.time(0, 0, 0, 0), None, dt.time(23, 59, 59, 999_000)], dtype="time"
[dt.time(0, 0, 0, 0), None, dt.time(23, 59, 59, 999_000)],
dtype="dbtime",
),
pyarrow.array(
[dt.time(0, 0, 0, 0), None, dt.time(23, 59, 59, 999_000)],
Expand All @@ -131,7 +139,8 @@ def test_to_arrow(series, expected):
),
(
pandas.Series(
[dt.time(0, 0, 0, 0), None, dt.time(23, 59, 59, 999_999)], dtype="time"
[dt.time(0, 0, 0, 0), None, dt.time(23, 59, 59, 999_999)],
dtype="dbtime",
),
pyarrow.array(
[dt.time(0, 0, 0, 0), None, dt.time(23, 59, 59, 999_999)],
Expand All @@ -145,7 +154,7 @@ def test_to_arrow(series, expected):
dt.time(12, 30, 15, 125_000),
dt.time(23, 59, 59, 999_999),
],
dtype="time",
dtype="dbtime",
),
pyarrow.array(
[
Expand Down
4 changes: 2 additions & 2 deletions tests/unit/test_date.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@
],
)
def test_date_parsing(value, expected):
assert pandas.Series([value], dtype="date")[0] == expected
assert pandas.Series([value], dtype="dbdate")[0] == expected


@pytest.mark.parametrize(
Expand All @@ -59,4 +59,4 @@ def test_date_parsing(value, expected):
)
def test_date_parsing_errors(value, error):
with pytest.raises(ValueError, match=error):
pandas.Series([value], dtype="date")
pandas.Series([value], dtype="dbdate")
34 changes: 17 additions & 17 deletions tests/unit/test_dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,39 +23,39 @@
pandas_release = packaging.version.parse(pd.__version__).release

SAMPLE_RAW_VALUES = dict(
date=(datetime.date(2021, 2, 2), "2021-2-3", None),
time=(datetime.time(1, 2, 2), "1:2:3.5", None),
dbdate=(datetime.date(2021, 2, 2), "2021-2-3", None),
dbtime=(datetime.time(1, 2, 2), "1:2:3.5", None),
)
SAMPLE_VALUES = dict(
date=(
dbdate=(
datetime.date(2021, 2, 2),
datetime.date(2021, 2, 3),
datetime.date(2021, 2, 4),
datetime.date(2021, 2, 5),
),
time=(
dbtime=(
datetime.time(1, 2, 2),
datetime.time(1, 2, 3, 500000),
datetime.time(1, 2, 4, 500000),
datetime.time(1, 2, 5, 500000),
),
)
SAMPLE_DT_VALUES = dict(
date=(
dbdate=(
"2021-02-02T00:00:00.000000",
"2021-02-03T00:00:00.000000",
"2021-02-04T00:00:00.000000",
"2021-02-05T00:00:00.000000",
),
time=(
dbtime=(
"1970-01-01T01:02:02.000000",
"1970-01-01T01:02:03.500000",
"1970-01-01T01:02:04.500000",
"1970-01-01T01:02:05.500000",
),
)

for_date_and_time = pytest.mark.parametrize("dtype", ["date", "time"])
for_date_and_time = pytest.mark.parametrize("dtype", ["dbdate", "dbtime"])


def eq_na(a1, a2):
Expand All @@ -72,7 +72,7 @@ def register_dtype():
def _cls(dtype):
import db_dtypes

return getattr(db_dtypes, dtype.capitalize() + "Array")
return getattr(db_dtypes, dtype[2:].capitalize() + "Array")


def _make_one(dtype):
Expand Down Expand Up @@ -322,7 +322,7 @@ def test_take(dtype, allow_fill, fill_value):
if fill_value == 42:
fill_value = expected_fill = (
datetime.date(1971, 4, 2)
if dtype == "date"
if dtype == "dbdate"
else datetime.time(0, 42, 42, 424242)
)
else:
Expand Down Expand Up @@ -441,7 +441,7 @@ def test_astype_copy(dtype):
],
)
def test_asdatetime(dtype, same):
a = _make_one("date")
a = _make_one("dbdate")
for dt in dtype, np.dtype(dtype) if dtype != "datetime" else dtype:
if same:
b = a.astype(dt, copy=False)
Expand Down Expand Up @@ -480,7 +480,7 @@ def test_astimedelta(dtype):
.astype("timedelta64[ns]" if dtype == "timedelta" else dtype)
)

a = _cls("time")([t, None])
a = _cls("dbtime")([t, None])
b = a.astype(dtype)
np.array_equal(b[:1], expect)
assert pd.isna(b[1]) and str(b[1]) == "NaT"
Expand Down Expand Up @@ -526,7 +526,7 @@ def test_min_max_median(dtype):
if pandas_release >= (1, 2):
assert (
a.median() == datetime.time(1, 2, 4)
if dtype == "time"
if dtype == "dbtime"
else datetime.date(2021, 2, 3)
)

Expand All @@ -553,14 +553,14 @@ def test_min_max_median(dtype):
if pandas_release >= (1, 2):
assert (
a.median() == datetime.time(1, 2, 2, 750000)
if dtype == "time"
if dtype == "dbtime"
else datetime.date(2021, 2, 2)
)


def test_date_add():
dates = _cls("date")(SAMPLE_VALUES["date"])
times = _cls("time")(SAMPLE_VALUES["time"])
dates = _cls("dbdate")(SAMPLE_VALUES["dbdate"])
times = _cls("dbtime")(SAMPLE_VALUES["dbtime"])
expect = dates.astype("datetime64") + times.astype("timedelta64")

assert np.array_equal(dates + times, expect)
Expand Down Expand Up @@ -592,8 +592,8 @@ def test_date_add():


def test_date_sub():
dates = _cls("date")(SAMPLE_VALUES["date"])
dates2 = _cls("date")(
dates = _cls("dbdate")(SAMPLE_VALUES["dbdate"])
dates2 = _cls("dbdate")(
(
datetime.date(2021, 1, 2),
datetime.date(2021, 1, 3),
Expand Down
4 changes: 2 additions & 2 deletions tests/unit/test_time.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@
],
)
def test_time_parsing(value, expected):
assert pandas.Series([value], dtype="time")[0] == expected
assert pandas.Series([value], dtype="dbtime")[0] == expected


@pytest.mark.parametrize(
Expand All @@ -81,4 +81,4 @@ def test_time_parsing(value, expected):
)
def test_time_parsing_errors(value, error):
with pytest.raises(ValueError, match=error):
pandas.Series([value], dtype="time")
pandas.Series([value], dtype="dbtime")