Skip to content

Commit e05aa0a

Browse files
laurenyunadiaya
authored andcommitted
Switch ReadTheDocs links to stable (instead of latest) (#628)
1 parent 03c277c commit e05aa0a

File tree

2 files changed

+9
-8
lines changed

2 files changed

+9
-8
lines changed

CHANGELOG.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,7 @@ CHANGELOG
66
==========
77

88
* doc-fix: update information about saving models in the MXNet README
9+
* doc-fix: change ReadTheDocs links from latest to stable
910

1011
1.18.2
1112
======

README.rst

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -708,8 +708,8 @@ For more detailed examples of running hyperparameter tuning jobs, see:
708708
709709
For more detailed explanations of the classes that this library provides for automatic model tuning, see:
710710
711-
- `API docs for HyperparameterTuner and parameter range classes <https://sagemaker.readthedocs.io/en/latest/tuner.html>`__
712-
- `API docs for analytics classes <https://sagemaker.readthedocs.io/en/latest/analytics.html>`__
711+
- `API docs for HyperparameterTuner and parameter range classes <https://sagemaker.readthedocs.io/en/stable/tuner.html>`__
712+
- `API docs for analytics classes <https://sagemaker.readthedocs.io/en/stable/analytics.html>`__
713713
714714
715715
SageMaker Batch Transform
@@ -734,7 +734,7 @@ Alternatively, if you already have a SageMaker model, you can create an instance
734734
instance_count=1,
735735
instance_type='ml.m4.xlarge')
736736
737-
For a full list of the possible options to configure by using either of these methods, see the API docs for `Estimator <https://sagemaker.readthedocs.io/en/latest/estimators.html#sagemaker.estimator.Estimator.transformer>`__ or `Transformer <https://sagemaker.readthedocs.io/en/latest/transformer.html#sagemaker.transformer.Transformer>`__.
737+
For a full list of the possible options to configure by using either of these methods, see the API docs for `Estimator <https://sagemaker.readthedocs.io/en/stable/estimators.html#sagemaker.estimator.Estimator.transformer>`__ or `Transformer <https://sagemaker.readthedocs.io/en/stable/transformer.html#sagemaker.transformer.Transformer>`__.
738738
739739
After you create a ``Transformer`` object, you can invoke ``transform()`` to start a batch transform job with the S3 location of your data.
740740
You can also specify other attributes of your data, such as the content type.
@@ -743,7 +743,7 @@ You can also specify other attributes of your data, such as the content type.
743743
744744
transformer.transform('s3://my-bucket/batch-transform-input')
745745
746-
For more details about what can be specified here, see `API docs <https://sagemaker.readthedocs.io/en/latest/transformer.html#sagemaker.transformer.Transformer.transform>`__.
746+
For more details about what can be specified here, see `API docs <https://sagemaker.readthedocs.io/en/stable/transformer.html#sagemaker.transformer.Transformer.transform>`__.
747747
748748
749749
Secure Training and Inference with VPC
@@ -864,11 +864,11 @@ then call its ``predict()`` method with your input.
864864
865865
You can use either the generic ``RealTimePredictor`` class, which by default does not perform any serialization/deserialization transformations on your input,
866866
but can be configured to do so through constructor arguments:
867-
http://sagemaker.readthedocs.io/en/latest/predictors.html
867+
http://sagemaker.readthedocs.io/en/stable/predictors.html
868868
869869
Or you can use the TensorFlow / MXNet specific predictor classes, which have default serialization/deserialization logic:
870-
http://sagemaker.readthedocs.io/en/latest/sagemaker.tensorflow.html#tensorflow-predictor
871-
http://sagemaker.readthedocs.io/en/latest/sagemaker.mxnet.html#mxnet-predictor
870+
http://sagemaker.readthedocs.io/en/stable/sagemaker.tensorflow.html#tensorflow-predictor
871+
http://sagemaker.readthedocs.io/en/stable/sagemaker.mxnet.html#mxnet-predictor
872872
873873
Example code using the TensorFlow predictor:
874874
@@ -887,7 +887,7 @@ That is, you can bring your own model:
887887
888888
First, package the files for the trained model into a ``.tar.gz`` file, and upload the archive to S3.
889889
890-
Next, create a ``Model`` object that corresponds to the framework that you are using: `MXNetModel <https://sagemaker.readthedocs.io/en/latest/sagemaker.mxnet.html#mxnet-model>`__ or `TensorFlowModel <https://sagemaker.readthedocs.io/en/latest/sagemaker.tensorflow.html#tensorflow-model>`__.
890+
Next, create a ``Model`` object that corresponds to the framework that you are using: `MXNetModel <https://sagemaker.readthedocs.io/en/stable/sagemaker.mxnet.html#mxnet-model>`__ or `TensorFlowModel <https://sagemaker.readthedocs.io/en/stable/sagemaker.tensorflow.html#tensorflow-model>`__.
891891
892892
Example code using ``MXNetModel``:
893893

0 commit comments

Comments
 (0)