@@ -57,30 +57,32 @@ def test_attach_deploy(mxnet_training_job, sagemaker_session):
57
57
predictor .predict (data )
58
58
59
59
60
- def test_deploy_model (mxnet_training_job , sagemaker_session ):
60
+ def test_deploy_model (mxnet_training_job , sagemaker_session , mxnet_full_version ):
61
61
endpoint_name = 'test-mxnet-deploy-model-{}' .format (sagemaker_timestamp ())
62
62
63
63
with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session ):
64
64
desc = sagemaker_session .sagemaker_client .describe_training_job (TrainingJobName = mxnet_training_job )
65
65
model_data = desc ['ModelArtifacts' ]['S3ModelArtifacts' ]
66
66
script_path = os .path .join (DATA_DIR , 'mxnet_mnist' , 'mnist.py' )
67
67
model = MXNetModel (model_data , 'SageMakerRole' , entry_point = script_path ,
68
- py_version = PYTHON_VERSION , sagemaker_session = sagemaker_session )
68
+ py_version = PYTHON_VERSION , sagemaker_session = sagemaker_session ,
69
+ framework_version = mxnet_full_version )
69
70
predictor = model .deploy (1 , 'ml.m4.xlarge' , endpoint_name = endpoint_name )
70
71
71
72
data = numpy .zeros (shape = (1 , 1 , 28 , 28 ))
72
73
predictor .predict (data )
73
74
74
75
75
- def test_deploy_model_with_update_endpoint (mxnet_training_job , sagemaker_session ):
76
+ def test_deploy_model_with_update_endpoint (mxnet_training_job , sagemaker_session , mxnet_full_version ):
76
77
endpoint_name = 'test-mxnet-deploy-model-{}' .format (sagemaker_timestamp ())
77
78
78
79
with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session ):
79
80
desc = sagemaker_session .sagemaker_client .describe_training_job (TrainingJobName = mxnet_training_job )
80
81
model_data = desc ['ModelArtifacts' ]['S3ModelArtifacts' ]
81
82
script_path = os .path .join (DATA_DIR , 'mxnet_mnist' , 'mnist.py' )
82
83
model = MXNetModel (model_data , 'SageMakerRole' , entry_point = script_path ,
83
- py_version = PYTHON_VERSION , sagemaker_session = sagemaker_session )
84
+ py_version = PYTHON_VERSION , sagemaker_session = sagemaker_session ,
85
+ framework_version = mxnet_full_version )
84
86
model .deploy (1 , 'ml.t2.medium' , endpoint_name = endpoint_name )
85
87
old_endpoint = sagemaker_session .describe_endpoint (EndpointName = endpoint_name )
86
88
old_config_name = old_endpoint ['EndpointConfigName' ]
@@ -96,7 +98,7 @@ def test_deploy_model_with_update_endpoint(mxnet_training_job, sagemaker_session
96
98
assert new_production_variants ['AcceleratorType' ] is None
97
99
98
100
99
- def test_deploy_model_with_update_non_existing_endpoint (mxnet_training_job , sagemaker_session ):
101
+ def test_deploy_model_with_update_non_existing_endpoint (mxnet_training_job , sagemaker_session , mxnet_full_version ):
100
102
endpoint_name = 'test-mxnet-deploy-model-{}' .format (sagemaker_timestamp ())
101
103
expected_error_message = 'Endpoint with name "{}" does not exist; ' \
102
104
'please use an existing endpoint name' .format (endpoint_name )
@@ -106,7 +108,8 @@ def test_deploy_model_with_update_non_existing_endpoint(mxnet_training_job, sage
106
108
model_data = desc ['ModelArtifacts' ]['S3ModelArtifacts' ]
107
109
script_path = os .path .join (DATA_DIR , 'mxnet_mnist' , 'mnist.py' )
108
110
model = MXNetModel (model_data , 'SageMakerRole' , entry_point = script_path ,
109
- py_version = PYTHON_VERSION , sagemaker_session = sagemaker_session )
111
+ py_version = PYTHON_VERSION , sagemaker_session = sagemaker_session ,
112
+ framework_version = mxnet_full_version )
110
113
model .deploy (1 , 'ml.t2.medium' , endpoint_name = endpoint_name )
111
114
sagemaker_session .describe_endpoint (EndpointName = endpoint_name )
112
115
0 commit comments