-
Notifications
You must be signed in to change notification settings - Fork 1.2k
VectorStore for GenAI integrations #2528
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 1 commit
Commits
Show all changes
36 commits
Select commit
Hold shift + click to select a range
f30f1ad
ElasticsearchStore
maxjakob e03a17f
Update elasticsearch/store/_utilities.py
maxjakob 8ff1c7c
rename; depend on client; async only
maxjakob 9be44fd
generate _sync files
maxjakob 7ee3846
add cleanup step for _sync generation
maxjakob 2fd89bd
fix formatting
maxjakob 9387b74
more linting fixes
maxjakob b18d63d
batch embedding call; infer num_dimensions
maxjakob 9f83408
revert accidental changes
maxjakob 9803414
keep field names only in store; apply metadata mappings in store
maxjakob 7647961
fix typos in file names
maxjakob d397982
use `elasticsearch_url` fixture; create conftest.py
maxjakob 2f1fcb0
export relevant classes
maxjakob b19de27
remove Semantic strategy
maxjakob 274911a
es_query is sync
maxjakob 8cec9cc
async strategies
maxjakob bbf2be9
cleanup old file
maxjakob 299cd94
add docker-compose service with model deployment
maxjakob 5f0d98d
optional dependencies for MMR
maxjakob 58c8b7d
only test sync parts
maxjakob 994b412
cleanup unasync script
maxjakob 5073af1
nox: install optional deps
maxjakob 9c50c6d
fix tests with requests remembering Transport
maxjakob a99a4f4
fix numpy typing
maxjakob d3c2e62
add user agent default argument
maxjakob 11c8825
move to `elasticsearch.helpers.vectorstore`
maxjakob 0d94881
use Protocol over ABC
maxjakob 6aa6d73
revert Protocol change because Python 3.7
maxjakob 71ca330
address PR feedback:
maxjakob a5dea84
improve docstring
maxjakob 6f81af9
fix metadata mappings issue
maxjakob 881d56c
address PR feedback
maxjakob f32ceb2
add error tests for strategies
maxjakob 9b1778e
canonical names, keyword args only
maxjakob a8d80f2
fix sparse vector strategy bug (duplicate `size`)
maxjakob d27f9f8
all wildcard deletes in compose ES
maxjakob File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
Empty file.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
from typing import Any, Dict, List, Optional, Union | ||
|
||
import numpy as np | ||
from elasticsearch import ( | ||
AsyncElasticsearch, | ||
BadRequestError, | ||
ConflictError, | ||
NotFoundError, | ||
) | ||
|
||
Matrix = Union[List[List[float]], List[np.ndarray], np.ndarray] | ||
|
||
|
||
def create_elasticsearch_client( | ||
agent_header: str, | ||
client: Optional[AsyncElasticsearch] = None, | ||
url: Optional[str] = None, | ||
cloud_id: Optional[str] = None, | ||
api_key: Optional[str] = None, | ||
username: Optional[str] = None, | ||
password: Optional[str] = None, | ||
client_params: Optional[Dict[str, Any]] = None, | ||
maxjakob marked this conversation as resolved.
Show resolved
Hide resolved
|
||
) -> AsyncElasticsearch: | ||
if not client: | ||
if url and cloud_id: | ||
raise ValueError( | ||
"Both es_url and cloud_id are defined. Please provide only one." | ||
) | ||
|
||
connection_params: Dict[str, Any] = {} | ||
|
||
if url: | ||
connection_params["hosts"] = [url] | ||
elif cloud_id: | ||
connection_params["cloud_id"] = cloud_id | ||
else: | ||
raise ValueError("Please provide either elasticsearch_url or cloud_id.") | ||
|
||
if api_key: | ||
connection_params["api_key"] = api_key | ||
elif username and password: | ||
connection_params["basic_auth"] = (username, password) | ||
|
||
if client_params is not None: | ||
connection_params.update(client_params) | ||
|
||
client = AsyncElasticsearch(**connection_params) | ||
|
||
if not isinstance(client, AsyncElasticsearch): | ||
raise TypeError("Elasticsearch client must be AsyncElasticsearch client") | ||
|
||
# Add integration-specific usage header for tracking usage in Elastic Cloud. | ||
# client.options preserces existing (non-user-agent) headers. | ||
maxjakob marked this conversation as resolved.
Show resolved
Hide resolved
|
||
client = client.options(headers={"User-Agent": agent_header}) | ||
|
||
return client | ||
|
||
|
||
async def model_must_be_deployed_async( | ||
client: AsyncElasticsearch, model_id: str | ||
) -> None: | ||
try: | ||
dummy = {"x": "y"} | ||
await client.ml.infer_trained_model(model_id=model_id, docs=[dummy]) | ||
except NotFoundError as err: | ||
raise err | ||
except ConflictError as err: | ||
raise NotFoundError( | ||
f"model '{model_id}' not found, please deploy it first", | ||
meta=err.meta, | ||
body=err.body, | ||
) from err | ||
except BadRequestError: | ||
# This error is expected because we do not know the expected document | ||
# shape and just use a dummy doc above. | ||
pass | ||
|
||
return None | ||
|
||
|
||
async def model_is_deployed_async(es_client: AsyncElasticsearch, model_id: str) -> bool: | ||
try: | ||
await model_must_be_deployed_async(es_client, model_id) | ||
return True | ||
except NotFoundError: | ||
return False | ||
|
||
|
||
def maximal_marginal_relevance( | ||
query_embedding: list, | ||
embedding_list: list, | ||
lambda_mult: float = 0.5, | ||
k: int = 4, | ||
) -> List[int]: | ||
"""Calculate maximal marginal relevance.""" | ||
query_embedding_arr = np.array(query_embedding) | ||
|
||
if min(k, len(embedding_list)) <= 0: | ||
return [] | ||
if query_embedding_arr.ndim == 1: | ||
query_embedding_arr = np.expand_dims(query_embedding_arr, axis=0) | ||
similarity_to_query = _cosine_similarity(query_embedding_arr, embedding_list)[0] | ||
most_similar = int(np.argmax(similarity_to_query)) | ||
idxs = [most_similar] | ||
selected = np.array([embedding_list[most_similar]]) | ||
while len(idxs) < min(k, len(embedding_list)): | ||
best_score = -np.inf | ||
idx_to_add = -1 | ||
similarity_to_selected = _cosine_similarity(embedding_list, selected) | ||
for i, query_score in enumerate(similarity_to_query): | ||
if i in idxs: | ||
continue | ||
redundant_score = max(similarity_to_selected[i]) | ||
equation_score = ( | ||
lambda_mult * query_score - (1 - lambda_mult) * redundant_score | ||
) | ||
if equation_score > best_score: | ||
best_score = equation_score | ||
idx_to_add = i | ||
idxs.append(idx_to_add) | ||
selected = np.append(selected, [embedding_list[idx_to_add]], axis=0) | ||
return idxs | ||
|
||
|
||
def _cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray: | ||
"""Row-wise cosine similarity between two equal-width matrices.""" | ||
if len(X) == 0 or len(Y) == 0: | ||
return np.array([]) | ||
|
||
X = np.array(X) | ||
Y = np.array(Y) | ||
if X.shape[1] != Y.shape[1]: | ||
raise ValueError( | ||
f"Number of columns in X and Y must be the same. X has shape {X.shape} " | ||
f"and Y has shape {Y.shape}." | ||
) | ||
try: | ||
import simsimd as simd # type: ignore | ||
|
||
X = np.array(X, dtype=np.float32) | ||
Y = np.array(Y, dtype=np.float32) | ||
Z = 1 - simd.cdist(X, Y, metric="cosine") | ||
if isinstance(Z, float): | ||
return np.array([Z]) | ||
return np.array(Z) | ||
except ImportError: | ||
X_norm = np.linalg.norm(X, axis=1) | ||
Y_norm = np.linalg.norm(Y, axis=1) | ||
# Ignore divide by zero errors run time warnings as those are handled below. | ||
with np.errstate(divide="ignore", invalid="ignore"): | ||
similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm) | ||
similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0 | ||
return similarity |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
import asyncio | ||
from abc import ABC, abstractmethod | ||
from typing import List, Optional | ||
|
||
import nest_asyncio # type: ignore | ||
from elasticsearch import AsyncElasticsearch | ||
|
||
from elasticsearch.store._utilities import create_elasticsearch_client | ||
|
||
|
||
class EmbeddingService(ABC): | ||
maxjakob marked this conversation as resolved.
Show resolved
Hide resolved
|
||
@abstractmethod | ||
async def embed_documents_async(self, texts: List[str]) -> List[List[float]]: | ||
"""Generate embeddings for a list of documents. | ||
|
||
Args: | ||
texts: A list of document strings to generate embeddings for. | ||
|
||
Returns: | ||
A list of embeddings, one for each document in the input. | ||
""" | ||
|
||
@abstractmethod | ||
def embed_documents(self, texts: List[str]) -> List[List[float]]: | ||
"""Generate embeddings for a list of documents. | ||
|
||
Args: | ||
texts: A list of document strings to generate embeddings for. | ||
|
||
Returns: | ||
A list of embeddings, one for each document in the input. | ||
""" | ||
|
||
@abstractmethod | ||
async def embed_query_async(self, query: str) -> List[float]: | ||
"""Generate an embedding for a single query text. | ||
|
||
Args: | ||
text: The query text to generate an embedding for. | ||
|
||
Returns: | ||
The embedding for the input query text. | ||
""" | ||
|
||
@abstractmethod | ||
def embed_query(self, query: str) -> List[float]: | ||
"""Generate an embedding for a single query text. | ||
|
||
Args: | ||
text: The query text to generate an embedding for. | ||
|
||
Returns: | ||
The embedding for the input query text. | ||
""" | ||
|
||
|
||
class ElasticsearchEmbeddings(EmbeddingService): | ||
maxjakob marked this conversation as resolved.
Show resolved
Hide resolved
|
||
"""Elasticsearch as a service for embedding model inference. | ||
|
||
You need to have an embedding model downloaded and deployed in Elasticsearch: | ||
- https://www.elastic.co/guide/en/elasticsearch/reference/current/infer-trained-model.html | ||
- https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-deploy-models.html | ||
""" # noqa: E501 | ||
|
||
def __init__( | ||
self, | ||
agent_header: str, | ||
model_id: str, | ||
input_field: str = "text_field", | ||
num_dimensions: Optional[int] = None, | ||
# Connection params | ||
es_client: Optional[AsyncElasticsearch] = None, | ||
es_url: Optional[str] = None, | ||
es_cloud_id: Optional[str] = None, | ||
es_api_key: Optional[str] = None, | ||
es_user: Optional[str] = None, | ||
es_password: Optional[str] = None, | ||
): | ||
""" | ||
Args: | ||
agent_header: user agent header specific to the 3rd party integration. | ||
Used for usage tracking in Elastic Cloud. | ||
model_id: The model_id of the model deployed in the Elasticsearch cluster. | ||
input_field: The name of the key for the input text field in the | ||
document. Defaults to 'text_field'. | ||
num_dimensions: The number of embedding dimensions. If None, then dimensions | ||
will be infer from an example inference call. | ||
es_client: Elasticsearch client connection. Alternatively specify the | ||
Elasticsearch connection with the other es_* parameters. | ||
""" | ||
nest_asyncio.apply() | ||
|
||
client = create_elasticsearch_client( | ||
agent_header=agent_header, | ||
client=es_client, | ||
url=es_url, | ||
cloud_id=es_cloud_id, | ||
api_key=es_api_key, | ||
username=es_user, | ||
password=es_password, | ||
) | ||
|
||
self.client = client.ml | ||
self.model_id = model_id | ||
self.input_field = input_field | ||
self._num_dimensions = num_dimensions | ||
|
||
async def embed_documents_async(self, texts: List[str]) -> List[List[float]]: | ||
result = await self._embedding_func_async(texts) | ||
return result | ||
|
||
def embed_documents(self, texts: List[str]) -> List[List[float]]: | ||
return asyncio.get_event_loop().run_until_complete( | ||
self.embed_documents_async(texts) | ||
) | ||
|
||
async def embed_query_async(self, text: str) -> List[float]: | ||
result = await self._embedding_func_async([text]) | ||
return result[0] | ||
|
||
def embed_query(self, query: str) -> List[float]: | ||
return asyncio.get_event_loop().run_until_complete( | ||
self.embed_query_async(query) | ||
) | ||
|
||
async def _embedding_func_async(self, texts: List[str]) -> List[List[float]]: | ||
response = await self.client.infer_trained_model( | ||
model_id=self.model_id, docs=[{self.input_field: text} for text in texts] | ||
) | ||
|
||
embeddings = [doc["predicted_value"] for doc in response["inference_results"]] | ||
return embeddings |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.