-
Notifications
You must be signed in to change notification settings - Fork 21
PR: Add allow_copy
flag to interchange protocol
#44
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -35,7 +35,8 @@ | |
ColumnObject = Any | ||
|
||
|
||
def from_dataframe(df : DataFrameObject) -> pd.DataFrame: | ||
def from_dataframe(df : DataFrameObject, | ||
allow_copy : bool = True) -> pd.DataFrame: | ||
""" | ||
Construct a pandas DataFrame from ``df`` if it supports ``__dataframe__`` | ||
""" | ||
|
@@ -46,7 +47,7 @@ def from_dataframe(df : DataFrameObject) -> pd.DataFrame: | |
if not hasattr(df, '__dataframe__'): | ||
raise ValueError("`df` does not support __dataframe__") | ||
|
||
return _from_dataframe(df.__dataframe__()) | ||
return _from_dataframe(df.__dataframe__(allow_copy=allow_copy)) | ||
|
||
|
||
def _from_dataframe(df : DataFrameObject) -> pd.DataFrame: | ||
|
@@ -160,7 +161,8 @@ def convert_categorical_column(col : ColumnObject) -> pd.Series: | |
return series | ||
|
||
|
||
def __dataframe__(cls, nan_as_null : bool = False) -> dict: | ||
def __dataframe__(cls, nan_as_null : bool = False, | ||
allow_copy : bool = True) -> dict: | ||
""" | ||
The public method to attach to pd.DataFrame | ||
|
||
|
@@ -171,8 +173,14 @@ def __dataframe__(cls, nan_as_null : bool = False) -> dict: | |
producer to overwrite null values in the data with ``NaN`` (or ``NaT``). | ||
This currently has no effect; once support for nullable extension | ||
dtypes is added, this value should be propagated to columns. | ||
|
||
``allow_copy`` is a keyword that defines if the given implementation | ||
is going to support striding buffers. It is optional, and the libraries | ||
do not need to implement it. Currently, if the flag is set to ``True`` it | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. " |
||
will raise a ``RuntimeError``. | ||
""" | ||
return _PandasDataFrame(cls, nan_as_null=nan_as_null) | ||
return _PandasDataFrame( | ||
cls, nan_as_null=nan_as_null, allow_copy=allow_copy) | ||
|
||
|
||
# Monkeypatch the Pandas DataFrame class to support the interchange protocol | ||
|
@@ -187,16 +195,16 @@ class _PandasBuffer: | |
Data in the buffer is guaranteed to be contiguous in memory. | ||
""" | ||
|
||
def __init__(self, x : np.ndarray) -> None: | ||
def __init__(self, x : np.ndarray, allow_copy : bool = True) -> None: | ||
""" | ||
Handle only regular columns (= numpy arrays) for now. | ||
""" | ||
if not x.strides == (x.dtype.itemsize,): | ||
# Array is not contiguous - this is possible to get in Pandas, | ||
# there was some discussion on whether to support it. Som extra | ||
# complexity for libraries that don't support it (e.g. Arrow), | ||
# but would help with numpy-based libraries like Pandas. | ||
raise RuntimeError("Design needs fixing - non-contiguous buffer") | ||
if not allow_copy: | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This removes the actual check for striding ( There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Logic: if not x.strides == (x.dtype.itemsize,):
# The protocol does not support strided buffers, so a copy is
# necessary. If that's not allowed, we need to raise an exception.
if allow_copy:
x = x.copy()
else:
raise RuntimeError("Exports cannot be zero-copy in the case "
"of a non-contiguous buffer") There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. And then adding a test case shows there's a problem - we don't hold on to the memory. |
||
# Array is not contiguous and strided buffers do not need to be | ||
# supported. It brings some extra complexity for libraries that | ||
# don't support it (e.g. Arrow). | ||
raise RuntimeError( | ||
"Exports cannot be zero-copy in the case of a non-contiguous buffer") | ||
|
||
# Store the numpy array in which the data resides as a private | ||
# attribute, so we can use it to retrieve the public attributes | ||
|
@@ -251,7 +259,8 @@ class _PandasColumn: | |
|
||
""" | ||
|
||
def __init__(self, column : pd.Series) -> None: | ||
def __init__(self, column : pd.Series, | ||
allow_copy : bool = True) -> None: | ||
""" | ||
Note: doesn't deal with extension arrays yet, just assume a regular | ||
Series/ndarray for now. | ||
|
@@ -262,6 +271,7 @@ def __init__(self, column : pd.Series) -> None: | |
|
||
# Store the column as a private attribute | ||
self._col = column | ||
self._allow_copy = allow_copy | ||
|
||
@property | ||
def size(self) -> int: | ||
|
@@ -446,11 +456,13 @@ def get_data_buffer(self) -> Tuple[_PandasBuffer, Any]: # Any is for self.dtype | |
""" | ||
_k = _DtypeKind | ||
if self.dtype[0] in (_k.INT, _k.UINT, _k.FLOAT, _k.BOOL): | ||
buffer = _PandasBuffer(self._col.to_numpy()) | ||
buffer = _PandasBuffer( | ||
self._col.to_numpy(), allow_copy=self._allow_copy) | ||
dtype = self.dtype | ||
elif self.dtype[0] == _k.CATEGORICAL: | ||
codes = self._col.values.codes | ||
buffer = _PandasBuffer(codes) | ||
buffer = _PandasBuffer( | ||
codes, allow_copy=self._allow_copy) | ||
dtype = self._dtype_from_pandasdtype(codes.dtype) | ||
else: | ||
raise NotImplementedError(f"Data type {self._col.dtype} not handled yet") | ||
|
@@ -483,7 +495,8 @@ class _PandasDataFrame: | |
``pd.DataFrame.__dataframe__`` as objects with the methods and | ||
attributes defined on this class. | ||
""" | ||
def __init__(self, df : pd.DataFrame, nan_as_null : bool = False) -> None: | ||
def __init__(self, df : pd.DataFrame, nan_as_null : bool = False, | ||
allow_copy : bool = True) -> None: | ||
""" | ||
Constructor - an instance of this (private) class is returned from | ||
`pd.DataFrame.__dataframe__`. | ||
|
@@ -494,6 +507,7 @@ def __init__(self, df : pd.DataFrame, nan_as_null : bool = False) -> None: | |
# This currently has no effect; once support for nullable extension | ||
# dtypes is added, this value should be propagated to columns. | ||
self._nan_as_null = nan_as_null | ||
self._allow_copy = allow_copy | ||
|
||
def num_columns(self) -> int: | ||
return len(self._df.columns) | ||
|
@@ -508,13 +522,16 @@ def column_names(self) -> Iterable[str]: | |
return self._df.columns.tolist() | ||
|
||
def get_column(self, i: int) -> _PandasColumn: | ||
return _PandasColumn(self._df.iloc[:, i]) | ||
return _PandasColumn( | ||
self._df.iloc[:, i], allow_copy=self._allow_copy) | ||
|
||
def get_column_by_name(self, name: str) -> _PandasColumn: | ||
return _PandasColumn(self._df[name]) | ||
return _PandasColumn( | ||
self._df[name], allow_copy=self._allow_copy) | ||
|
||
def get_columns(self) -> Iterable[_PandasColumn]: | ||
return [_PandasColumn(self._df[name]) for name in self._df.columns] | ||
return [_PandasColumn(self._df[name], allow_copy=self._allow_copy) | ||
for name in self._df.columns] | ||
|
||
def select_columns(self, indices: Sequence[int]) -> '_PandasDataFrame': | ||
if not isinstance(indices, collections.Sequence): | ||
|
@@ -552,13 +569,12 @@ def test_mixed_intfloat(): | |
|
||
|
||
def test_noncontiguous_columns(): | ||
# Currently raises: TBD whether it should work or not, see code comment | ||
# where the RuntimeError is raised. | ||
# Currently raises if the flag of allow zero copy is True. | ||
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) | ||
df = pd.DataFrame(arr) | ||
assert df[0].to_numpy().strides == (24,) | ||
pytest.raises(RuntimeError, from_dataframe, df) | ||
#df2 = from_dataframe(df) | ||
with pytest.raises(RuntimeError): | ||
df2 = from_dataframe(df, allow_copy=False) | ||
|
||
|
||
def test_categorical_dtype(): | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Rephrasing this a bit: