Skip to content

V0.0.6 cleanup #254

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Oct 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions R/cdc_baseline_forecaster.R
Original file line number Diff line number Diff line change
Expand Up @@ -161,11 +161,11 @@ cdc_baseline_forecaster <- function(
#' cdc_baseline_args_list(quantile_levels = c(.1, .3, .7, .9), n_training = 120)
cdc_baseline_args_list <- function(
data_frequency = "1 week",
aheads = 1:4,
aheads = 1:5,
n_training = Inf,
forecast_date = NULL,
quantile_levels = c(.01, .025, 1:19 / 20, .975, .99),
nsims = 1e3L,
nsims = 1e5L,
symmetrize = TRUE,
nonneg = TRUE,
quantile_by_key = "geo_value",
Expand Down
75 changes: 40 additions & 35 deletions R/flusight_hub_formatter.R
Original file line number Diff line number Diff line change
@@ -1,19 +1,28 @@
abbr_to_fips <- function(abbr) {
fi <- dplyr::left_join(
tibble::tibble(abbr = tolower(abbr)),
state_census,
by = "abbr"
) %>%
dplyr::mutate(fips = as.character(fips), fips = case_when(
fips == "0" ~ "US",
nchar(fips) < 2L ~ paste0("0", fips),
TRUE ~ fips
)) %>%
pull(.data$fips)
names(fi) <- NULL
fi
location_to_abbr <- function(location) {
dictionary <-
state_census %>%
dplyr::mutate(fips = sprintf("%02d", fips)) %>%
dplyr::transmute(
location = dplyr::case_match(fips, "00" ~ "US", .default = fips),
abbr
)
dictionary$abbr[match(location, dictionary$location)]
}

abbr_to_location <- function(abbr) {
dictionary <-
state_census %>%
dplyr::mutate(fips = sprintf("%02d", fips)) %>%
dplyr::transmute(
location = dplyr::case_match(fips, "00" ~ "US", .default = fips),
abbr
)
dictionary$location[match(abbr, dictionary$abbr)]
}




#' Format predictions for submission to FluSight forecast Hub
#'
#' This function converts predictions from any of the included forecasters into
Expand Down Expand Up @@ -47,22 +56,23 @@ abbr_to_fips <- function(abbr) {
#' @export
#'
#' @examples
#' library(dplyr)
#' weekly_deaths <- case_death_rate_subset %>%
#' select(geo_value, time_value, death_rate) %>%
#' left_join(state_census %>% select(pop, abbr), by = c("geo_value" = "abbr")) %>%
#' mutate(deaths = pmax(death_rate / 1e5 * pop * 7, 0)) %>%
#' select(-pop, -death_rate) %>%
#' group_by(geo_value) %>%
#' epi_slide(~ sum(.$deaths), before = 6, new_col_name = "deaths") %>%
#' ungroup() %>%
#' filter(weekdays(time_value) == "Saturday")
#' if (require(dplyr)) {
#' weekly_deaths <- case_death_rate_subset %>%
#' select(geo_value, time_value, death_rate) %>%
#' left_join(state_census %>% select(pop, abbr), by = c("geo_value" = "abbr")) %>%
#' mutate(deaths = pmax(death_rate / 1e5 * pop * 7, 0)) %>%
#' select(-pop, -death_rate) %>%
#' group_by(geo_value) %>%
#' epi_slide(~ sum(.$deaths), before = 6, new_col_name = "deaths") %>%
#' ungroup() %>%
#' filter(weekdays(time_value) == "Saturday")
#'
#' cdc <- cdc_baseline_forecaster(weekly_deaths, "deaths")
#' flusight_hub_formatter(cdc)
#' flusight_hub_formatter(cdc, target = "wk inc covid deaths")
#' flusight_hub_formatter(cdc, target = paste(horizon, "wk inc covid deaths"))
#' flusight_hub_formatter(cdc, target = "wk inc covid deaths", output_type = "quantile")
#' cdc <- cdc_baseline_forecaster(weekly_deaths, "deaths")
#' flusight_hub_formatter(cdc)
#' flusight_hub_formatter(cdc, target = "wk inc covid deaths")
#' flusight_hub_formatter(cdc, target = paste(horizon, "wk inc covid deaths"))
#' flusight_hub_formatter(cdc, target = "wk inc covid deaths", output_type = "quantile")
#' }
flusight_hub_formatter <- function(
object, ...,
.fcast_period = c("daily", "weekly")) {
Expand Down Expand Up @@ -93,11 +103,6 @@ flusight_hub_formatter.data.frame <- function(
object <- object %>%
# combine the predictions and the distribution
dplyr::mutate(.pred_distn = nested_quantiles(.pred_distn)) %>%
dplyr::rowwise() %>%
dplyr::mutate(
.pred_distn = list(add_row(.pred_distn, values = .pred, quantile_levels = NA)),
.pred = NULL
) %>%
tidyr::unnest(.pred_distn) %>%
# now we create the correct column names
dplyr::rename(
Expand All @@ -106,7 +111,7 @@ flusight_hub_formatter.data.frame <- function(
reference_date = forecast_date
) %>%
# convert to fips codes, and add any constant cols passed in ...
dplyr::mutate(location = abbr_to_fips(tolower(geo_value)), geo_value = NULL)
dplyr::mutate(location = abbr_to_location(tolower(geo_value)), geo_value = NULL)

# create target_end_date / horizon, depending on what is available
pp <- ifelse(match.arg(.fcast_period) == "daily", 1L, 7L)
Expand Down
4 changes: 2 additions & 2 deletions man/cdc_baseline_args_list.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

31 changes: 16 additions & 15 deletions man/flusight_hub_formatter.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.