-
Notifications
You must be signed in to change notification settings - Fork 1
feat: add covidcast meta signal model #8
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 4 commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,318 @@ | ||
from dataclasses import Field, InitVar, dataclass, field, fields | ||
from typing import ( | ||
Any, | ||
Callable, | ||
Dict, | ||
Generic, | ||
Iterable, | ||
List, | ||
Literal, | ||
Mapping, | ||
Optional, | ||
OrderedDict, | ||
Sequence, | ||
Tuple, | ||
Union, | ||
overload, | ||
) | ||
from functools import cached_property | ||
from pandas import DataFrame | ||
from ._model import ( | ||
EpiRangeLike, | ||
CALL_TYPE, | ||
EpidataFieldInfo, | ||
EpidataFieldType, | ||
EpiRangeParam, | ||
InvalidArgumentException, | ||
) | ||
|
||
|
||
GeoType = Literal["nation", "msa", "hrr", "hhs", "state", "county"] | ||
TimeType = Literal["day", "week"] | ||
|
||
|
||
@dataclass | ||
class WebLink: | ||
""" | ||
represents a web link | ||
""" | ||
|
||
alt: str | ||
href: str | ||
|
||
|
||
@dataclass | ||
class DataSignalGeoStatistics: | ||
""" | ||
COVIDcast signal statistics | ||
""" | ||
|
||
min: float | ||
max: float | ||
mean: float | ||
stdev: float | ||
|
||
|
||
def _limit_fields(data: Dict[str, Any], class_fields: Tuple[Field, ...]) -> Dict[str, Any]: | ||
field_names = {f.name for f in class_fields} | ||
return {k: v for k, v in data.items() if k in field_names} | ||
|
||
|
||
def define_covidcast_fields() -> List[EpidataFieldInfo]: | ||
return [ | ||
EpidataFieldInfo("source", EpidataFieldType.text), | ||
EpidataFieldInfo("signal", EpidataFieldType.text), | ||
EpidataFieldInfo( | ||
"geo_type", | ||
EpidataFieldType.categorical, | ||
categories=["nation", "msa", "hrr", "hhs", "state", "county"], | ||
), | ||
EpidataFieldInfo("geo_value", EpidataFieldType.text), | ||
EpidataFieldInfo("time_type", EpidataFieldType.categorical, categories=["day", "week"]), | ||
EpidataFieldInfo("time_value", EpidataFieldType.date), | ||
EpidataFieldInfo("issue", EpidataFieldType.date), | ||
EpidataFieldInfo("lag", EpidataFieldType.int), | ||
EpidataFieldInfo("value", EpidataFieldType.float), | ||
EpidataFieldInfo("stderr", EpidataFieldType.float), | ||
EpidataFieldInfo("sample_size", EpidataFieldType.int), | ||
EpidataFieldInfo("direction", EpidataFieldType.float), | ||
EpidataFieldInfo("missing_value", EpidataFieldType.int), | ||
EpidataFieldInfo("missing_stderr", EpidataFieldType.int), | ||
EpidataFieldInfo("missing_sample_size", EpidataFieldType.int), | ||
] | ||
|
||
|
||
@dataclass | ||
class DataSignal(Generic[CALL_TYPE]): | ||
""" | ||
represents a COVIDcast data signal | ||
""" | ||
|
||
_create_call: Callable[[Mapping[str, Union[None, EpiRangeLike, Iterable[EpiRangeLike]]]], CALL_TYPE] | ||
|
||
source: str | ||
signal: str | ||
signal_basename: str | ||
name: str | ||
active: bool | ||
short_description: str | ||
description: str | ||
time_label: str | ||
value_label: str | ||
format: Literal["per100k", "percent", "fraction", "count", "raw"] = "raw" | ||
category: Literal["early", "public", "late", "other"] = "other" | ||
high_values_are: Literal["good", "bad", "neutral"] = "neutral" | ||
is_smoothed: bool = False | ||
is_weighted: bool = False | ||
is_cumulative: bool = False | ||
has_stderr: bool = False | ||
has_sample_size: bool = False | ||
link: Sequence[WebLink] = field(default_factory=list) | ||
compute_from_base: bool = False | ||
time_type: TimeType = "day" | ||
|
||
geo_types: Dict[GeoType, DataSignalGeoStatistics] = field(default_factory=dict) | ||
|
||
def __post_init__(self) -> None: | ||
self.link = [WebLink(alt=l["alt"], href=l["href"]) if isinstance(l, dict) else l for l in self.link] | ||
stats_fields = fields(DataSignalGeoStatistics) | ||
self.geo_types = { | ||
k: DataSignalGeoStatistics(**_limit_fields(l, stats_fields)) if isinstance(l, dict) else l | ||
for k, l in self.geo_types.items() | ||
} | ||
|
||
@staticmethod | ||
def to_df(signals: Iterable["DataSignal"]) -> DataFrame: | ||
df = DataFrame( | ||
signals, | ||
columns=[ | ||
"source", | ||
"signal", | ||
"name", | ||
"active", | ||
"short_description", | ||
"description", | ||
"time_type", | ||
"time_label", | ||
"value_label", | ||
"format", | ||
"category", | ||
"high_values_are", | ||
"is_smoothed", | ||
"is_weighted", | ||
"is_cumulative", | ||
"has_stderr", | ||
"has_sample_size", | ||
], | ||
) | ||
df.insert(6, "geo_types", [",".join(s.geo_types.keys()) for s in signals]) | ||
return df.set_index(["source", "signal"]) | ||
|
||
@property | ||
def key(self) -> Tuple[str, str]: | ||
return (self.source, self.signal) | ||
|
||
def call( | ||
self, | ||
geo_type: GeoType, | ||
geo_values: Union[int, str, Iterable[Union[int, str]]], | ||
time_values: EpiRangeParam, | ||
as_of: Union[None, str, int] = None, | ||
issues: Optional[EpiRangeParam] = None, | ||
lag: Optional[int] = None, | ||
) -> CALL_TYPE: | ||
"""Fetch Delphi's COVID-19 Surveillance Streams""" | ||
if any((v is None for v in (geo_type, geo_values, time_values))): | ||
raise InvalidArgumentException("`geo_type`, `time_values`, and `geo_values` are all required") | ||
if issues is not None and lag is not None: | ||
raise InvalidArgumentException("`issues` and `lag` are mutually exclusive") | ||
|
||
return self._create_call( | ||
dict( | ||
data_source=self.source, | ||
signals=self.signal, | ||
time_type=self.time_type, | ||
time_values=time_values, | ||
geo_type=geo_type, | ||
geo_values=geo_values, | ||
as_of=as_of, | ||
issues=issues, | ||
lag=lag, | ||
) | ||
) | ||
|
||
def __call__( | ||
self, | ||
geo_type: GeoType, | ||
geo_values: Union[int, str, Iterable[Union[int, str]]], | ||
time_values: EpiRangeParam, | ||
as_of: Union[None, str, int] = None, | ||
issues: Optional[EpiRangeParam] = None, | ||
lag: Optional[int] = None, | ||
) -> CALL_TYPE: | ||
"""Fetch Delphi's COVID-19 Surveillance Streams""" | ||
return self.call(geo_type, geo_values, time_values, as_of, issues, lag) | ||
|
||
|
||
@dataclass | ||
class DataSource(Generic[CALL_TYPE]): | ||
""" | ||
represents a COVIDcast data source | ||
""" | ||
|
||
_create_call: InitVar[Callable[[Mapping[str, Union[None, EpiRangeLike, Iterable[EpiRangeLike]]]], CALL_TYPE]] | ||
|
||
source: str | ||
db_source: str | ||
name: str | ||
description: str | ||
reference_signal: str | ||
license: Optional[str] = None | ||
link: Sequence[WebLink] = field(default_factory=list) | ||
dua: Optional[str] = None | ||
|
||
signals: Sequence[DataSignal] = field(default_factory=list) | ||
|
||
def __post_init__( | ||
self, _create_call: Callable[[Mapping[str, Union[None, EpiRangeLike, Iterable[EpiRangeLike]]]], CALL_TYPE] | ||
) -> None: | ||
self.link = [WebLink(alt=l["alt"], href=l["href"]) if isinstance(l, dict) else l for l in self.link] | ||
signal_fields = fields(DataSignal) | ||
self.signals = [ | ||
DataSignal(_create_call=_create_call, **_limit_fields(s, signal_fields)) if isinstance(s, dict) else s | ||
for s in self.signals | ||
] | ||
|
||
@staticmethod | ||
def to_df(sources: Iterable["DataSource"]) -> DataFrame: | ||
df = DataFrame( | ||
sources, | ||
columns=["source", "name", "description", "reference_signal", "license", "dua"], | ||
) | ||
df["signals"] = [",".join(ss.signal for ss in s.signals) for s in sources] | ||
return df.set_index("source") | ||
|
||
def get_signal(self, signal: str) -> Optional[DataSignal]: | ||
return next((s for s in self.signals if s.signal == signal), None) | ||
|
||
@cached_property | ||
def signal_df(self) -> DataFrame: | ||
return DataSignal.to_df(self.signals) | ||
|
||
|
||
@dataclass | ||
class CovidcastDataSources(Generic[CALL_TYPE]): | ||
""" | ||
COVIDcast data source helper | ||
""" | ||
|
||
sources: Sequence[DataSource[CALL_TYPE]] | ||
_source_by_name: Dict[str, DataSource[CALL_TYPE]] = field(init=False, default_factory=dict) | ||
_signals_by_key: OrderedDict[Tuple[str, str], DataSignal[CALL_TYPE]] = field( | ||
init=False, default_factory=OrderedDict | ||
) | ||
|
||
_create_call: Callable[[Mapping[str, Union[None, EpiRangeLike, Iterable[EpiRangeLike]]]], CALL_TYPE] | ||
|
||
def __post_init__(self) -> None: | ||
self._source_by_name = {s.source: s for s in self.sources} | ||
for source in self.sources: | ||
for signal in source.signals: | ||
self._signals_by_key[signal.key] = signal | ||
|
||
def get_source(self, source: str) -> Optional[DataSource[CALL_TYPE]]: | ||
return self._source_by_name.get(source) | ||
|
||
@property | ||
def source_names(self) -> Iterable[str]: | ||
return (s.source for s in self.sources) | ||
|
||
@cached_property | ||
def source_df(self) -> DataFrame: | ||
return DataSource.to_df(self.sources) | ||
|
||
@property | ||
def signals(self) -> Iterable[DataSignal[CALL_TYPE]]: | ||
return self._signals_by_key.values() | ||
|
||
@cached_property | ||
def signal_df(self) -> DataFrame: | ||
return DataSignal.to_df(self.signals) | ||
|
||
def get_signal(self, source: str, signal: str) -> Optional[DataSignal[CALL_TYPE]]: | ||
return self._signals_by_key.get((source, signal)) | ||
|
||
@property | ||
def signal_names(self) -> Iterable[Tuple[str, str]]: | ||
return self._signals_by_key.keys() | ||
|
||
def __iter__(self) -> Iterable[DataSource[CALL_TYPE]]: | ||
return iter(self.sources) | ||
|
||
@overload | ||
def __getitem__(self, source: str) -> DataSource[CALL_TYPE]: | ||
... | ||
|
||
@overload | ||
def __getitem__(self, source_signal: Tuple[str, str]) -> DataSignal[CALL_TYPE]: | ||
... | ||
|
||
def __getitem__( | ||
self, source_signal: Union[str, Tuple[str, str]] | ||
) -> Union[DataSource[CALL_TYPE], DataSignal[CALL_TYPE]]: | ||
if isinstance(source_signal, str): | ||
r = self.get_source(source_signal) | ||
assert r is not None | ||
return r | ||
s = self.get_signal(source_signal[0], source_signal[1]) | ||
assert s is not None | ||
return s | ||
|
||
@staticmethod | ||
def create( | ||
meta: List[Dict], | ||
create_call: Callable[[Mapping[str, Union[None, EpiRangeLike, Iterable[EpiRangeLike]]]], CALL_TYPE], | ||
) -> "CovidcastDataSources": | ||
source_fields = fields(DataSource) | ||
sources = [DataSource(_create_call=create_call, **_limit_fields(k, source_fields)) for k in meta] | ||
return CovidcastDataSources(sources, create_call) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.