Skip to content

Leonlu2/delete correlation endpoint #1094

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Mar 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 0 additions & 26 deletions integrations/server/test_covidcast_endpoints.py
Original file line number Diff line number Diff line change
Expand Up @@ -182,32 +182,6 @@ def match_row(trend, row):
self.assertEqual(trend["max_value"], first.value)
self.assertEqual(trend["max_trend"], "decreasing")

def test_correlation(self):
"""Request a signal from the /correlation endpoint."""

num_rows = 30
reference_rows = [CovidcastTestRow.make_default_row(signal="ref", time_value=20200401 + i, value=i) for i in range(num_rows)]
first = reference_rows[0]
self._insert_rows(reference_rows)
other_rows = [CovidcastTestRow.make_default_row(signal="other", time_value=20200401 + i, value=i) for i in range(num_rows)]
other = other_rows[0]
self._insert_rows(other_rows)
max_lag = 3

out = self._fetch("/correlation", reference=first.signal_pair(), others=other.signal_pair(), geo=first.geo_pair(), window="20200401-20201212", lag=max_lag)
self.assertEqual(out["result"], 1)
df = pd.DataFrame(out["epidata"])
self.assertEqual(len(df), max_lag * 2 + 1) # -...0...+
self.assertEqual(df["geo_type"].unique().tolist(), [first.geo_type])
self.assertEqual(df["geo_value"].unique().tolist(), [first.geo_value])
self.assertEqual(df["signal_source"].unique().tolist(), [other.source])
self.assertEqual(df["signal_signal"].unique().tolist(), [other.signal])

self.assertEqual(df["lag"].tolist(), list(range(-max_lag, max_lag + 1)))
self.assertEqual(df["r2"].unique().tolist(), [1.0])
self.assertEqual(df["slope"].unique().tolist(), [1.0])
self.assertEqual(df["intercept"].tolist(), [3.0, 2.0, 1.0, 0.0, -1.0, -2.0, -3.0])
self.assertEqual(df["samples"].tolist(), [num_rows - abs(l) for l in range(-max_lag, max_lag + 1)])

def test_csv(self):
"""Request a signal from the /csv endpoint."""
Expand Down
75 changes: 1 addition & 74 deletions src/server/endpoints/covidcast.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
from .._printer import create_printer, CSVPrinter
from .._validate import require_all
from .._pandas import as_pandas, print_pandas
from .covidcast_utils import compute_trend, compute_trends, compute_correlations, compute_trend_value, CovidcastMetaEntry
from .covidcast_utils import compute_trend, compute_trends, compute_trend_value, CovidcastMetaEntry
from ..utils import shift_day_value, day_to_time_value, time_value_to_iso, time_value_to_day, shift_week_value, time_value_to_week, guess_time_value_is_day, week_to_time_value, TimeValues
from .covidcast_utils.model import TimeType, count_signal_time_types, data_sources, create_source_signal_alias_mapper

Expand Down Expand Up @@ -206,79 +206,6 @@ def gen(rows):
return p(filter_fields(gen(r)))


@bp.route("/correlation", methods=("GET", "POST"))
def handle_correlation():
require_all(request, "reference", "window", "others", "geo")
reference = parse_single_source_signal_arg("reference")
other_sets = parse_source_signal_arg("others")
daily_signals, weekly_signals = count_signal_time_types(other_sets + [reference])
source_signal_sets, alias_mapper = create_source_signal_alias_mapper(other_sets + [reference])
geo_sets = parse_geo_arg()
time_window = parse_day_or_week_range_arg("window")
is_day = time_window.is_day
_verify_argument_time_type_matches(is_day, daily_signals, weekly_signals)

lag = extract_integer("lag")
if lag is None:
lag = 28

# `lag` above is used in post-processing, not in the database query, so we can use latest here
q = QueryBuilder(latest_table, "t")

fields_string = ["geo_type", "geo_value", "source", "signal"]
fields_int = ["time_value"]
fields_float = ["value"]
q.set_fields(fields_string, fields_int, fields_float)
q.set_sort_order("geo_type", "geo_value", "source", "signal", "time_value")

q.apply_source_signal_filters(
"source",
"signal",
source_signal_sets,
)
q.apply_geo_filters("geo_type", "geo_value", geo_sets)
q.apply_time_filter("time_type", "time_value", time_window)

df = as_pandas(str(q), q.params)
if is_day:
df["time_value"] = to_datetime(df["time_value"], format="%Y%m%d")
else:
# week but convert to date for simpler shifting
df["time_value"] = to_datetime(df["time_value"].apply(lambda v: time_value_to_week(v).startdate()))

p = create_printer(request.values.get("format"))

def prepare_data_frame(df):
return df[["time_value", "value"]].set_index("time_value")

def gen():
by_geo = df.groupby(["geo_type", "geo_value"])
for (geo_type, geo_value), group in by_geo:
# group by source, signal
by_signal = group.groupby(["source", "signal"])

# find reference group
# dataframe structure: index=time_value, value=value
reference_group = next((prepare_data_frame(group) for (source, signal), group in by_signal if source == reference.source and signal == reference.signal[0]), None)

if reference_group is None or reference_group.empty:
continue # no data for reference

# dataframe structure: index=time_value, value=value
other_groups = [((source, signal), prepare_data_frame(group)) for (source, signal), group in by_signal if not (source == reference.source and signal == reference.signal[0])]
if not other_groups:
continue # no other signals

for (source, signal), other_group in other_groups:
if alias_mapper:
source = alias_mapper(source, signal)
for cor in compute_correlations(geo_type, geo_value, source, signal, lag, reference_group, other_group, is_day):
yield cor.asdict()

# now use a generator for sending the rows and execute all the other queries
return p(filter_fields(gen()))


@bp.route("/csv", methods=("GET", "POST"))
def handle_export():
source, signal = request.values.get("signal", "jhu-csse:confirmed_incidence_num").split(":")
Expand Down
1 change: 0 additions & 1 deletion src/server/endpoints/covidcast_utils/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,2 @@
from .trend import compute_trend, compute_trend_value, compute_trends
from .correlation import compute_correlations
from .meta import CovidcastMetaEntry
93 changes: 0 additions & 93 deletions src/server/endpoints/covidcast_utils/correlation.py

This file was deleted.

69 changes: 0 additions & 69 deletions tests/server/endpoints/covidcast_utils/test_correlation.py

This file was deleted.

2 changes: 1 addition & 1 deletion tests/server/test_pandas.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ def setUp(self):
@patch("delphi.epidata.server._pandas.text")
@patch("pandas.read_sql_query")
def test_as_pandas(self, mock_read_sql_query, mock_sqlalch_text):
with app.test_request_context('/correlation'):
with app.test_request_context('covidcast/'):

mock_sqlalch_text.return_value = sentinel.default_limit
as_pandas("", params=None, db_engine=None)
Expand Down