@@ -25,6 +25,13 @@ def test_normal(self):
25
25
assert fips_to_state ("12003" ) == "fl"
26
26
assert fips_to_state ("50103" ) == "vt"
27
27
assert fips_to_state ("15003" ) == "hi"
28
+
29
+ def test_mega (self ):
30
+
31
+ assert fips_to_state ("01000" ) == "al"
32
+ assert fips_to_state ("13000" ) == "ga"
33
+ assert fips_to_state ("44000" ) == "ri"
34
+ assert fips_to_state ("12000" ) == "fl"
28
35
29
36
30
37
class TestDisburse :
@@ -74,15 +81,27 @@ def test_county(self):
74
81
}
75
82
)
76
83
77
- new_df = geo_map (df , "county" , MAP_DF )
84
+ df_mega = pd .DataFrame (
85
+ {
86
+ "fips" : ["90013" , "90001" ],
87
+ "timestamp" : ["2020-02-15" , "2020-02-15" ],
88
+ "new_counts" : [8 , 2 ],
89
+ "cumulative_counts" : [80 , 12 ],
90
+ "population" : [np .nan , np .nan ],
91
+ }
92
+ )
93
+
94
+ df = df .append (df_mega )
95
+
96
+ new_df = geo_map (df , "county" , MAP_DF , 'new_counts' )
78
97
79
98
exp_incidence = df ["new_counts" ] / df ["population" ] * 100000
80
99
exp_cprop = df ["cumulative_counts" ] / df ["population" ] * 100000
81
-
82
- assert set (new_df ["geo_id" ].values ) == set (df [ "fips" ]. values )
100
+
101
+ assert set (new_df ["geo_id" ].values ) == set ([ '01000' , '13000' , '48027' , '50103' , '53003' ] )
83
102
assert set (new_df ["timestamp" ].values ) == set (df ["timestamp" ].values )
84
- assert set (new_df ["incidence" ].values ) == set (exp_incidence .values )
85
- assert set (new_df ["cumulative_prop" ].values ) == set (exp_cprop .values )
103
+ assert set (new_df ["incidence" ].values ) - set (exp_incidence .values ) == set ([ np . Inf ] )
104
+ assert set (new_df ["cumulative_prop" ].values ) - set (exp_cprop .values ) == set ([ np . Inf ] )
86
105
87
106
def test_state (self ):
88
107
@@ -95,19 +114,31 @@ def test_state(self):
95
114
"population" : [100 , 2100 , 300 , 25 ],
96
115
}
97
116
)
117
+
118
+ df_mega = pd .DataFrame (
119
+ {
120
+ "fips" : ["90013" , "90001" , "04000" , "25000" ],
121
+ "timestamp" : ["2020-02-15" , "2020-02-15" , "2020-02-15" , "2020-02-15" ],
122
+ "new_counts" : [8 , 2 , 5 , 10 ],
123
+ "cumulative_counts" : [80 , 12 , 30 , 100 ],
124
+ "population" : [np .nan , np .nan , np .nan , np .nan ],
125
+ }
126
+ )
127
+
128
+ df = df .append (df_mega )
98
129
99
- new_df = geo_map (df , "state" , MAP_DF )
130
+ new_df = geo_map (df , "state" , MAP_DF , 'new_counts' )
100
131
101
- exp_incidence = np .array ([27 , 13 ]) / np .array ([2500 , 25 ]) * 100000
102
- exp_cprop = np .array ([165 , 60 ]) / np .array ([2500 , 25 ]) * 100000
132
+ exp_incidence = np .array ([27 + 5 , 13 + 10 ]) / np .array ([2500 , 25 ]) * 100000
133
+ exp_cprop = np .array ([165 + 30 , 60 + 100 ]) / np .array ([2500 , 25 ]) * 100000
103
134
104
- assert (new_df ["geo_id" ].values == ["az" , "ma" ]). all ( )
105
- assert (new_df ["timestamp" ].values == ["2020-02-15" , "2020-02-15" ]). all ( )
106
- assert (new_df ["new_counts" ].values == [ 27 , 13 ]). all ( )
107
- assert (new_df ["cumulative_counts" ].values == [ 165 , 60 ]). all ( )
108
- assert (new_df ["population" ].values == [2500 , 25 ]). all ( )
109
- assert (new_df ["incidence" ].values == exp_incidence ). all ( )
110
- assert (new_df ["cumulative_prop" ].values == exp_cprop ). all ( )
135
+ assert set (new_df ["geo_id" ].values ) == set ( ["az" , "ma" , "al" , "ga" ] )
136
+ assert set (new_df ["timestamp" ].values ) == set ( ["2020-02-15" ] )
137
+ assert set (new_df ["new_counts" ].values ) == set ([ 32 , 23 , 2 , 8 ] )
138
+ assert set (new_df ["cumulative_counts" ].values ) == set ([ 195 , 160 , 12 , 80 ] )
139
+ assert set (new_df ["population" ].values ) == set ( [2500 , 25 , 0 ] )
140
+ assert set (new_df ["incidence" ].values ) - set ( exp_incidence ) == set ([ np . Inf ] )
141
+ assert set (new_df ["cumulative_prop" ].values ) - set ( exp_cprop ) == set ([ np . Inf ] )
111
142
112
143
def test_hrr (self ):
113
144
@@ -121,7 +152,19 @@ def test_hrr(self):
121
152
}
122
153
)
123
154
124
- new_df = geo_map (df , "hrr" , MAP_DF )
155
+ # df_mega = pd.DataFrame(
156
+ # {
157
+ # "fips": ["90013", "90001"],
158
+ # "timestamp": ["2020-02-15", "2020-02-15"],
159
+ # "new_counts": [8, 2],
160
+ # "cumulative_counts": [80, 12],
161
+ # "population": [np.nan, np.nan],
162
+ # }
163
+ # )
164
+
165
+ # df = df.append(df_mega)
166
+
167
+ new_df = geo_map (df , "hrr" , MAP_DF , 'new_counts' )
125
168
126
169
exp_incidence = np .array ([13 , 27 ]) / np .array ([25 , 2500 ]) * 100000
127
170
exp_cprop = np .array ([60 , 165 ]) / np .array ([25 , 2500 ]) * 100000
@@ -145,8 +188,20 @@ def test_msa(self):
145
188
"population" : [100 , 2100 , 300 , 25 ],
146
189
}
147
190
)
148
-
149
- new_df = geo_map (df , "msa" , MAP_DF )
191
+
192
+ # df_mega = pd.DataFrame(
193
+ # {
194
+ # "fips": ["90013", "90001"],
195
+ # "timestamp": ["2020-02-15", "2020-02-15"],
196
+ # "new_counts": [8, 2],
197
+ # "cumulative_counts": [80, 12],
198
+ # "population": [np.nan, np.nan],
199
+ # }
200
+ # )
201
+
202
+ # df = df.append(df_mega)
203
+
204
+ new_df = geo_map (df , "msa" , MAP_DF , 'new_counts' )
150
205
151
206
exp_incidence = np .array ([2 , 13 ]) / np .array ([300 , 25 ]) * 100000
152
207
exp_cprop = np .array ([45 , 60 ]) / np .array ([300 , 25 ]) * 100000
0 commit comments