@@ -2304,7 +2304,7 @@ def query(self, expr, inplace=False, **kwargs):
2304
2304
--------
2305
2305
>>> from numpy.random import randn
2306
2306
>>> from pandas import DataFrame
2307
- >>> df = DataFrame(randn(10, 2), columns=list('ab'))
2307
+ >>> df = pd. DataFrame(randn(10, 2), columns=list('ab'))
2308
2308
>>> df.query('a > b')
2309
2309
>>> df[df.a > df.b] # same result as the previous expression
2310
2310
"""
@@ -2368,7 +2368,7 @@ def eval(self, expr, inplace=False, **kwargs):
2368
2368
--------
2369
2369
>>> from numpy.random import randn
2370
2370
>>> from pandas import DataFrame
2371
- >>> df = DataFrame(randn(10, 2), columns=list('ab'))
2371
+ >>> df = pd. DataFrame(randn(10, 2), columns=list('ab'))
2372
2372
>>> df.eval('a + b')
2373
2373
>>> df.eval('c = a + b')
2374
2374
"""
@@ -2664,7 +2664,7 @@ def assign(self, **kwargs):
2664
2664
2665
2665
Examples
2666
2666
--------
2667
- >>> df = DataFrame({'A': range(1, 11), 'B': np.random.randn(10)})
2667
+ >>> df = pd. DataFrame({'A': range(1, 11), 'B': np.random.randn(10)})
2668
2668
2669
2669
Where the value is a callable, evaluated on `df`:
2670
2670
@@ -3780,9 +3780,9 @@ def nlargest(self, n, columns, keep='first'):
3780
3780
3781
3781
Examples
3782
3782
--------
3783
- >>> df = DataFrame({'a': [1, 10, 8, 11, -1],
3784
- ... 'b': list('abdce'),
3785
- ... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
3783
+ >>> df = pd. DataFrame({'a': [1, 10, 8, 11, -1],
3784
+ ... 'b': list('abdce'),
3785
+ ... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
3786
3786
>>> df.nlargest(3, 'a')
3787
3787
a b c
3788
3788
3 11 c 3
@@ -3815,9 +3815,9 @@ def nsmallest(self, n, columns, keep='first'):
3815
3815
3816
3816
Examples
3817
3817
--------
3818
- >>> df = DataFrame({'a': [1, 10, 8, 11, -1],
3819
- ... 'b': list('abdce'),
3820
- ... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
3818
+ >>> df = pd. DataFrame({'a': [1, 10, 8, 11, -1],
3819
+ ... 'b': list('abdce'),
3820
+ ... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
3821
3821
>>> df.nsmallest(3, 'a')
3822
3822
a b c
3823
3823
4 -1 e 4
@@ -5818,7 +5818,7 @@ def quantile(self, q=0.5, axis=0, numeric_only=True,
5818
5818
Examples
5819
5819
--------
5820
5820
5821
- >>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
5821
+ >>> df = pd. DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
5822
5822
columns=['a', 'b'])
5823
5823
>>> df.quantile(.1)
5824
5824
a 1.3
@@ -5941,7 +5941,7 @@ def isin(self, values):
5941
5941
--------
5942
5942
When ``values`` is a list:
5943
5943
5944
- >>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
5944
+ >>> df = pd. DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
5945
5945
>>> df.isin([1, 3, 12, 'a'])
5946
5946
A B
5947
5947
0 True True
@@ -5950,7 +5950,7 @@ def isin(self, values):
5950
5950
5951
5951
When ``values`` is a dict:
5952
5952
5953
- >>> df = DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]})
5953
+ >>> df = pd. DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]})
5954
5954
>>> df.isin({'A': [1, 3], 'B': [4, 7, 12]})
5955
5955
A B
5956
5956
0 True False # Note that B didn't match the 1 here.
@@ -5959,7 +5959,7 @@ def isin(self, values):
5959
5959
5960
5960
When ``values`` is a Series or DataFrame:
5961
5961
5962
- >>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
5962
+ >>> df = pd. DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
5963
5963
>>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']})
5964
5964
>>> df.isin(other)
5965
5965
A B
0 commit comments