@@ -176,15 +176,14 @@ def _reconstruct_data(values, dtype, original):
176
176
-------
177
177
Index for extension types, otherwise ndarray casted to dtype
178
178
"""
179
- from pandas import Index
180
179
181
180
if is_extension_array_dtype (dtype ):
182
181
values = dtype .construct_array_type ()._from_sequence (values )
183
182
elif is_bool_dtype (dtype ):
184
183
values = values .astype (dtype )
185
184
186
185
# we only support object dtypes bool Index
187
- if isinstance (original , Index ):
186
+ if isinstance (original , ABCIndexClass ):
188
187
values = values .astype (object )
189
188
elif dtype is not None :
190
189
values = values .astype (dtype )
@@ -833,7 +832,7 @@ def duplicated(values, keep="first"):
833
832
return f (values , keep = keep )
834
833
835
834
836
- def mode (values , dropna = True ):
835
+ def mode (values , dropna : bool = True ):
837
836
"""
838
837
Returns the mode(s) of an array.
839
838
@@ -1888,7 +1887,7 @@ def searchsorted(arr, value, side="left", sorter=None):
1888
1887
}
1889
1888
1890
1889
1891
- def diff (arr , n , axis = 0 ):
1890
+ def diff (arr , n : int , axis : int = 0 ):
1892
1891
"""
1893
1892
difference of n between self,
1894
1893
analogous to s-s.shift(n)
@@ -1904,7 +1903,6 @@ def diff(arr, n, axis=0):
1904
1903
Returns
1905
1904
-------
1906
1905
shifted
1907
-
1908
1906
"""
1909
1907
1910
1908
n = int (n )
@@ -1935,13 +1933,15 @@ def diff(arr, n, axis=0):
1935
1933
f = _diff_special [arr .dtype .name ]
1936
1934
f (arr , out_arr , n , axis )
1937
1935
else :
1938
- res_indexer = [slice (None )] * arr .ndim
1939
- res_indexer [axis ] = slice (n , None ) if n >= 0 else slice (None , n )
1940
- res_indexer = tuple (res_indexer )
1941
-
1942
- lag_indexer = [slice (None )] * arr .ndim
1943
- lag_indexer [axis ] = slice (None , - n ) if n > 0 else slice (- n , None )
1944
- lag_indexer = tuple (lag_indexer )
1936
+ # To keep mypy happy, _res_indexer is a list while res_indexer is
1937
+ # a tuple, ditto for lag_indexer.
1938
+ _res_indexer = [slice (None )] * arr .ndim
1939
+ _res_indexer [axis ] = slice (n , None ) if n >= 0 else slice (None , n )
1940
+ res_indexer = tuple (_res_indexer )
1941
+
1942
+ _lag_indexer = [slice (None )] * arr .ndim
1943
+ _lag_indexer [axis ] = slice (None , - n ) if n > 0 else slice (- n , None )
1944
+ lag_indexer = tuple (_lag_indexer )
1945
1945
1946
1946
# need to make sure that we account for na for datelike/timedelta
1947
1947
# we don't actually want to subtract these i8 numbers
0 commit comments