@@ -2066,7 +2066,7 @@ def to_feather(self, fname):
2066
2066
Parameters
2067
2067
----------
2068
2068
fname : str
2069
- string file path
2069
+ String file path.
2070
2070
"""
2071
2071
from pandas .io .feather_format import to_feather
2072
2072
@@ -4772,6 +4772,7 @@ def drop_duplicates(self, subset=None, keep="first", inplace=False):
4772
4772
Only consider certain columns for identifying duplicates, by
4773
4773
default use all of the columns
4774
4774
keep : {'first', 'last', False}, default 'first'
4775
+ Determines which duplicates (if any) to keep.
4775
4776
- ``first`` : Drop duplicates except for the first occurrence.
4776
4777
- ``last`` : Drop duplicates except for the last occurrence.
4777
4778
- False : Drop all duplicates.
@@ -4806,10 +4807,10 @@ def duplicated(self, subset=None, keep="first"):
4806
4807
Only consider certain columns for identifying duplicates, by
4807
4808
default use all of the columns
4808
4809
keep : {'first', 'last', False}, default 'first'
4809
- - ``first`` : Mark duplicates as ``True`` except for the
4810
- first occurrence.
4811
- - ``last `` : Mark duplicates as ``True`` except for the
4812
- last occurrence.
4810
+ Determines which duplicates (if any) to mark.
4811
+
4812
+ - ``first `` : Mark duplicates as ``True`` except for the first occurrence.
4813
+ - ``last`` : Mark duplicates as ``True`` except for the last occurrence.
4813
4814
- False : Mark all duplicates as ``True``.
4814
4815
4815
4816
Returns
@@ -6233,8 +6234,8 @@ def unstack(self, level=-1, fill_value=None):
6233
6234
----------
6234
6235
level : int, str, or list of these, default -1 (last level)
6235
6236
Level(s) of index to unstack, can pass level name
6236
- fill_value : replace NaN with this value if the unstack produces
6237
- missing values
6237
+ fill_value : int, string or dict
6238
+ Replace NaN with this value if the unstack produces missing values
6238
6239
6239
6240
Returns
6240
6241
-------
@@ -6665,6 +6666,8 @@ def apply(
6665
6666
by result_type='broadcast'.
6666
6667
6667
6668
raw : bool, default False
6669
+ Determines if row or column is passed as a Series or ndarry object:
6670
+
6668
6671
* ``False`` : passes each row or column as a Series to the
6669
6672
function.
6670
6673
* ``True`` : the passed function will receive ndarray objects
@@ -7357,6 +7360,8 @@ def corr(self, method="pearson", min_periods=1):
7357
7360
Parameters
7358
7361
----------
7359
7362
method : {'pearson', 'kendall', 'spearman'} or callable
7363
+ Method of correlation:
7364
+
7360
7365
* pearson : standard correlation coefficient
7361
7366
* kendall : Kendall Tau correlation coefficient
7362
7367
* spearman : Spearman rank correlation
@@ -7556,10 +7561,13 @@ def corrwith(self, other, axis=0, drop=False, method="pearson"):
7556
7561
other : DataFrame, Series
7557
7562
Object with which to compute correlations.
7558
7563
axis : {0 or 'index', 1 or 'columns'}, default 0
7559
- 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise.
7564
+ The axis to use. 0 or 'index' to compute column-wise, 1 or 'columns' for
7565
+ row-wise.
7560
7566
drop : bool, default False
7561
7567
Drop missing indices from result.
7562
7568
method : {'pearson', 'kendall', 'spearman'} or callable
7569
+ Method of correlation:
7570
+
7563
7571
* pearson : standard correlation coefficient
7564
7572
* kendall : Kendall Tau correlation coefficient
7565
7573
* spearman : Spearman rank correlation
@@ -7939,8 +7947,8 @@ def idxmin(self, axis=0, skipna=True):
7939
7947
Parameters
7940
7948
----------
7941
7949
axis : {0 or 'index', 1 or 'columns'}, default 0
7942
- 0 or 'index' for row-wise, 1 or 'columns' for column-wise
7943
- skipna : bool , default True
7950
+ The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise
7951
+ skipna : boolean , default True
7944
7952
Exclude NA/null values. If an entire row/column is NA, the result
7945
7953
will be NA.
7946
7954
@@ -7976,8 +7984,8 @@ def idxmax(self, axis=0, skipna=True):
7976
7984
Parameters
7977
7985
----------
7978
7986
axis : {0 or 'index', 1 or 'columns'}, default 0
7979
- 0 or 'index' for row-wise, 1 or 'columns' for column-wise
7980
- skipna : bool , default True
7987
+ The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise
7988
+ skipna : boolean , default True
7981
7989
Exclude NA/null values. If an entire row/column is NA, the result
7982
7990
will be NA.
7983
7991
0 commit comments