Skip to content

Revert "change: enable wrong-import-position pylint check" #916

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 9, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .pylintrc
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,7 @@ disable=
simplifiable-if-expression, # TODO: Simplify expressions
too-many-public-methods, # TODO: Resolve
ungrouped-imports, # TODO: Group imports
wrong-import-position, # TODO: Correct import positions
consider-using-ternary, # TODO: Consider ternary expressions
chained-comparison, # TODO: Simplify chained comparison between operands
simplifiable-if-statement, # TODO: Simplify ifs
Expand Down
3 changes: 1 addition & 2 deletions src/sagemaker/amazon/record_pb2.py

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

11 changes: 6 additions & 5 deletions src/sagemaker/cli/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,6 @@
# language governing permissions and limitations under the License.
from __future__ import absolute_import

from sagemaker.tensorflow import estimator
from sagemaker.tensorflow import model

from sagemaker.cli.common import HostCommand, TrainCommand


Expand All @@ -33,7 +30,9 @@ def __init__(self, args):
self.evaluation_steps = args.evaluation_steps

def create_estimator(self):
return estimator.TensorFlow(
from sagemaker.tensorflow import TensorFlow

return TensorFlow(
training_steps=self.training_steps,
evaluation_steps=self.evaluation_steps,
py_version=self.python,
Expand All @@ -48,7 +47,9 @@ def create_estimator(self):

class TensorFlowHostCommand(HostCommand):
def create_model(self, model_url):
return model.TensorFlowModel(
from sagemaker.tensorflow.model import TensorFlowModel

return TensorFlowModel(
model_data=model_url,
role=self.role_name,
entry_point=self.script,
Expand Down
6 changes: 2 additions & 4 deletions src/sagemaker/tensorflow/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,5 @@
# classes for tensorflow serving. Currently tensorflow_serving_api can only be pip-installed for python 2.
sys.path.append(os.path.dirname(__file__))

from sagemaker.tensorflow import ( # noqa: E402,F401 # pylint: disable=wrong-import-position
estimator,
)
from sagemaker.tensorflow import model # noqa: E402,F401 # pylint: disable=wrong-import-position
from sagemaker.tensorflow.estimator import TensorFlow # noqa: E402, F401
from sagemaker.tensorflow.model import TensorFlowModel, TensorFlowPredictor # noqa: E402, F401
12 changes: 6 additions & 6 deletions tests/component/test_tf_estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@

import pytest
from mock import Mock
from sagemaker.tensorflow import estimator
from sagemaker.tensorflow import TensorFlow


SCRIPT = "resnet_cifar_10.py"
Expand Down Expand Up @@ -53,7 +53,7 @@ def sagemaker_session():

# Test that we pass all necessary fields from estimator to the session when we call deploy
def test_deploy(sagemaker_session, tf_version):
tensorflow_estimator = estimator.TensorFlow(
estimator = TensorFlow(
entry_point=SCRIPT,
source_dir=SOURCE_DIR,
role=ROLE,
Expand All @@ -64,13 +64,13 @@ def test_deploy(sagemaker_session, tf_version):
base_job_name="test-cifar",
)

tensorflow_estimator.fit("s3://mybucket/train")
print("job succeeded: {}".format(tensorflow_estimator.latest_training_job.name))
estimator.fit("s3://mybucket/train")
print("job succeeded: {}".format(estimator.latest_training_job.name))

tensorflow_estimator.deploy(initial_instance_count=1, instance_type=INSTANCE_TYPE_CPU)
estimator.deploy(initial_instance_count=1, instance_type=INSTANCE_TYPE_CPU)
image = IMAGE_URI_FORMAT_STRING.format(REGION, CPU_IMAGE_NAME, tf_version, "cpu", "py2")
sagemaker_session.create_model.assert_called_with(
tensorflow_estimator._current_job_name,
estimator._current_job_name,
ROLE,
{
"Environment": {
Expand Down
12 changes: 6 additions & 6 deletions tests/integ/test_horovod.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@

import sagemaker.utils
import tests.integ as integ
from sagemaker.tensorflow import estimator
from sagemaker.tensorflow import TensorFlow
from tests.integ import test_region, timeout, HOSTING_NO_P3_REGIONS

horovod_dir = os.path.join(os.path.dirname(__file__), "..", "data", "horovod")
Expand All @@ -47,7 +47,7 @@ def instance_type(request):
@pytest.mark.canary_quick
def test_horovod(sagemaker_session, instance_type, tmpdir):
job_name = sagemaker.utils.unique_name_from_base("tf-horovod")
tensorflow_estimator = estimator.TensorFlow(
estimator = TensorFlow(
entry_point=os.path.join(horovod_dir, "test_hvd_basic.py"),
role="SageMakerRole",
train_instance_count=2,
Expand All @@ -60,10 +60,10 @@ def test_horovod(sagemaker_session, instance_type, tmpdir):
)

with timeout.timeout(minutes=integ.TRAINING_DEFAULT_TIMEOUT_MINUTES):
tensorflow_estimator.fit(job_name=job_name)
estimator.fit(job_name=job_name)

tmp = str(tmpdir)
extract_files_from_s3(tensorflow_estimator.model_data, tmp)
extract_files_from_s3(estimator.model_data, tmp)

for rank in range(2):
assert read_json("rank-%s" % rank, tmp)["rank"] == rank
Expand All @@ -74,7 +74,7 @@ def test_horovod(sagemaker_session, instance_type, tmpdir):
def test_horovod_local_mode(sagemaker_local_session, instances, processes, tmpdir):
output_path = "file://%s" % tmpdir
job_name = sagemaker.utils.unique_name_from_base("tf-horovod")
tensorflow_estimator = estimator.TensorFlow(
estimator = TensorFlow(
entry_point=os.path.join(horovod_dir, "test_hvd_basic.py"),
role="SageMakerRole",
train_instance_count=2,
Expand All @@ -88,7 +88,7 @@ def test_horovod_local_mode(sagemaker_local_session, instances, processes, tmpdi
)

with timeout.timeout(minutes=integ.TRAINING_DEFAULT_TIMEOUT_MINUTES):
tensorflow_estimator.fit(job_name=job_name)
estimator.fit(job_name=job_name)

tmp = str(tmpdir)
extract_files(output_path.replace("file://", ""), tmp)
Expand Down
52 changes: 26 additions & 26 deletions tests/integ/test_local_mode.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@

from sagemaker.local import LocalSession, LocalSagemakerRuntimeClient, LocalSagemakerClient
from sagemaker.mxnet import MXNet
from sagemaker.tensorflow import estimator
from sagemaker.tensorflow import TensorFlow

# endpoint tests all use the same port, so we use this lock to prevent concurrent execution
LOCK_PATH = os.path.join(tempfile.gettempdir(), "sagemaker_test_local_mode_lock")
Expand Down Expand Up @@ -90,7 +90,7 @@ def test_tf_local_mode(sagemaker_local_session):
with stopit.ThreadingTimeout(5 * 60, swallow_exc=False):
script_path = os.path.join(DATA_DIR, "iris", "iris-dnn-classifier.py")

tensorflow_estimator = estimator.TensorFlow(
estimator = TensorFlow(
entry_point=script_path,
role="SageMakerRole",
framework_version="1.12",
Expand All @@ -103,16 +103,16 @@ def test_tf_local_mode(sagemaker_local_session):
sagemaker_session=sagemaker_local_session,
)

inputs = tensorflow_estimator.sagemaker_session.upload_data(
inputs = estimator.sagemaker_session.upload_data(
path=DATA_PATH, key_prefix="integ-test-data/tf_iris"
)
tensorflow_estimator.fit(inputs)
print("job succeeded: {}".format(tensorflow_estimator.latest_training_job.name))
estimator.fit(inputs)
print("job succeeded: {}".format(estimator.latest_training_job.name))

endpoint_name = tensorflow_estimator.latest_training_job.name
endpoint_name = estimator.latest_training_job.name
with lock.lock(LOCK_PATH):
try:
json_predictor = tensorflow_estimator.deploy(
json_predictor = estimator.deploy(
initial_instance_count=1, instance_type="local", endpoint_name=endpoint_name
)

Expand All @@ -124,7 +124,7 @@ def test_tf_local_mode(sagemaker_local_session):

assert dict_result == list_result
finally:
tensorflow_estimator.delete_endpoint()
estimator.delete_endpoint()


@pytest.mark.local_mode
Expand All @@ -133,7 +133,7 @@ def test_tf_distributed_local_mode(sagemaker_local_session):
with stopit.ThreadingTimeout(5 * 60, swallow_exc=False):
script_path = os.path.join(DATA_DIR, "iris", "iris-dnn-classifier.py")

tensorflow_estimator = estimator.TensorFlow(
estimator = TensorFlow(
entry_point=script_path,
role="SageMakerRole",
framework_version="1.12",
Expand All @@ -147,14 +147,14 @@ def test_tf_distributed_local_mode(sagemaker_local_session):
)

inputs = "file://" + DATA_PATH
tensorflow_estimator.fit(inputs)
print("job succeeded: {}".format(tensorflow_estimator.latest_training_job.name))
estimator.fit(inputs)
print("job succeeded: {}".format(estimator.latest_training_job.name))

endpoint_name = tensorflow_estimator.latest_training_job.name
endpoint_name = estimator.latest_training_job.name

with lock.lock(LOCK_PATH):
try:
json_predictor = tensorflow_estimator.deploy(
json_predictor = estimator.deploy(
initial_instance_count=1, instance_type="local", endpoint_name=endpoint_name
)

Expand All @@ -166,7 +166,7 @@ def test_tf_distributed_local_mode(sagemaker_local_session):

assert dict_result == list_result
finally:
tensorflow_estimator.delete_endpoint()
estimator.delete_endpoint()


@pytest.mark.local_mode
Expand All @@ -175,7 +175,7 @@ def test_tf_local_data(sagemaker_local_session):
with stopit.ThreadingTimeout(5 * 60, swallow_exc=False):
script_path = os.path.join(DATA_DIR, "iris", "iris-dnn-classifier.py")

tensorflow_estimator = estimator.TensorFlow(
estimator = TensorFlow(
entry_point=script_path,
role="SageMakerRole",
framework_version="1.12",
Expand All @@ -189,13 +189,13 @@ def test_tf_local_data(sagemaker_local_session):
)

inputs = "file://" + DATA_PATH
tensorflow_estimator.fit(inputs)
print("job succeeded: {}".format(tensorflow_estimator.latest_training_job.name))
estimator.fit(inputs)
print("job succeeded: {}".format(estimator.latest_training_job.name))

endpoint_name = tensorflow_estimator.latest_training_job.name
endpoint_name = estimator.latest_training_job.name
with lock.lock(LOCK_PATH):
try:
json_predictor = tensorflow_estimator.deploy(
json_predictor = estimator.deploy(
initial_instance_count=1, instance_type="local", endpoint_name=endpoint_name
)

Expand All @@ -207,7 +207,7 @@ def test_tf_local_data(sagemaker_local_session):

assert dict_result == list_result
finally:
tensorflow_estimator.delete_endpoint()
estimator.delete_endpoint()


@pytest.mark.local_mode
Expand All @@ -216,7 +216,7 @@ def test_tf_local_data_local_script():
with stopit.ThreadingTimeout(5 * 60, swallow_exc=False):
script_path = os.path.join(DATA_DIR, "iris", "iris-dnn-classifier.py")

tensorflow_estimator = estimator.TensorFlow(
estimator = TensorFlow(
entry_point=script_path,
role="SageMakerRole",
framework_version="1.12",
Expand All @@ -231,13 +231,13 @@ def test_tf_local_data_local_script():

inputs = "file://" + DATA_PATH

tensorflow_estimator.fit(inputs)
print("job succeeded: {}".format(tensorflow_estimator.latest_training_job.name))
estimator.fit(inputs)
print("job succeeded: {}".format(estimator.latest_training_job.name))

endpoint_name = tensorflow_estimator.latest_training_job.name
endpoint_name = estimator.latest_training_job.name
with lock.lock(LOCK_PATH):
try:
json_predictor = tensorflow_estimator.deploy(
json_predictor = estimator.deploy(
initial_instance_count=1, instance_type="local", endpoint_name=endpoint_name
)

Expand All @@ -249,7 +249,7 @@ def test_tf_local_data_local_script():

assert dict_result == list_result
finally:
tensorflow_estimator.delete_endpoint()
estimator.delete_endpoint()


@pytest.mark.local_mode
Expand Down
16 changes: 7 additions & 9 deletions tests/integ/test_tf_cifar.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
import tests.integ
from tests.integ.timeout import timeout_and_delete_endpoint_by_name, timeout

from sagemaker.tensorflow import estimator
from sagemaker.tensorflow import TensorFlow
from sagemaker.utils import unique_name_from_base

PICKLE_CONTENT_TYPE = "application/python-pickle"
Expand Down Expand Up @@ -50,7 +50,7 @@ def test_cifar(sagemaker_session):

dataset_path = os.path.join(tests.integ.DATA_DIR, "cifar_10", "data")

tensorflow_estimator = estimator.TensorFlow(
estimator = TensorFlow(
entry_point="resnet_cifar_10.py",
source_dir=script_path,
role="SageMakerRole",
Expand All @@ -64,19 +64,17 @@ def test_cifar(sagemaker_session):
base_job_name="test-cifar",
)

inputs = tensorflow_estimator.sagemaker_session.upload_data(
inputs = estimator.sagemaker_session.upload_data(
path=dataset_path, key_prefix="data/cifar10"
)
job_name = unique_name_from_base("test-tf-cifar")

tensorflow_estimator.fit(inputs, logs=False, job_name=job_name)
print("job succeeded: {}".format(tensorflow_estimator.latest_training_job.name))
estimator.fit(inputs, logs=False, job_name=job_name)
print("job succeeded: {}".format(estimator.latest_training_job.name))

endpoint_name = tensorflow_estimator.latest_training_job.name
endpoint_name = estimator.latest_training_job.name
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
predictor = tensorflow_estimator.deploy(
initial_instance_count=1, instance_type="ml.p2.xlarge"
)
predictor = estimator.deploy(initial_instance_count=1, instance_type="ml.p2.xlarge")
predictor.serializer = PickleSerializer()
predictor.content_type = PICKLE_CONTENT_TYPE

Expand Down
14 changes: 6 additions & 8 deletions tests/integ/test_tf_keras.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
import tests.integ
from tests.integ.timeout import timeout_and_delete_endpoint_by_name, timeout

from sagemaker.tensorflow import estimator
from sagemaker.tensorflow import TensorFlow
from sagemaker.utils import unique_name_from_base


Expand All @@ -37,7 +37,7 @@ def test_keras(sagemaker_session):
dataset_path = os.path.join(tests.integ.DATA_DIR, "cifar_10", "data")

with timeout(minutes=45):
tensorflow_estimator = estimator.TensorFlow(
estimator = TensorFlow(
entry_point="keras_cnn_cifar_10.py",
source_dir=script_path,
role="SageMakerRole",
Expand All @@ -51,18 +51,16 @@ def test_keras(sagemaker_session):
train_max_run=45 * 60,
)

inputs = tensorflow_estimator.sagemaker_session.upload_data(
inputs = estimator.sagemaker_session.upload_data(
path=dataset_path, key_prefix="data/cifar10"
)
job_name = unique_name_from_base("test-tf-keras")

tensorflow_estimator.fit(inputs, job_name=job_name)
estimator.fit(inputs, job_name=job_name)

endpoint_name = tensorflow_estimator.latest_training_job.name
endpoint_name = estimator.latest_training_job.name
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
predictor = tensorflow_estimator.deploy(
initial_instance_count=1, instance_type="ml.p2.xlarge"
)
predictor = estimator.deploy(initial_instance_count=1, instance_type="ml.p2.xlarge")

data = np.random.randn(32, 32, 3)
predict_response = predictor.predict(data)
Expand Down
Loading