Skip to content

fix: reset default output path in Transformer.transform #905

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jul 9, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion src/sagemaker/transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,7 @@ def __init__(
self.base_transform_job_name = base_transform_job_name
self._current_job_name = None
self.latest_transform_job = None
self._reset_output_path = False

self.sagemaker_session = sagemaker_session or Session()

Expand Down Expand Up @@ -146,10 +147,11 @@ def transform(

self._current_job_name = name_from_base(base_name)

if self.output_path is None:
if self.output_path is None or self._reset_output_path is True:
self.output_path = "s3://{}/{}".format(
self.sagemaker_session.default_bucket(), self._current_job_name
)
self._reset_output_path = True

self.latest_transform_job = _TransformJob.start_new(
self,
Expand Down
47 changes: 47 additions & 0 deletions tests/integ/test_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -301,6 +301,53 @@ def test_transform_byo_estimator(sagemaker_session):
assert tags == model_tags


def test_single_transformer_multiple_jobs(sagemaker_session, mxnet_full_version):
data_path = os.path.join(DATA_DIR, "mxnet_mnist")
script_path = os.path.join(data_path, "mnist.py")

mx = MXNet(
entry_point=script_path,
role="SageMakerRole",
train_instance_count=1,
train_instance_type="ml.c4.xlarge",
sagemaker_session=sagemaker_session,
framework_version=mxnet_full_version,
)

train_input = mx.sagemaker_session.upload_data(
path=os.path.join(data_path, "train"), key_prefix="integ-test-data/mxnet_mnist/train"
)
test_input = mx.sagemaker_session.upload_data(
path=os.path.join(data_path, "test"), key_prefix="integ-test-data/mxnet_mnist/test"
)
job_name = unique_name_from_base("test-mxnet-transform")

with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES):
mx.fit({"train": train_input, "test": test_input}, job_name=job_name)

transform_input_path = os.path.join(data_path, "transform", "data.csv")
transform_input_key_prefix = "integ-test-data/mxnet_mnist/transform"
transform_input = mx.sagemaker_session.upload_data(
path=transform_input_path, key_prefix=transform_input_key_prefix
)

transformer = mx.transformer(1, "ml.m4.xlarge")

job_name = unique_name_from_base("test-mxnet-transform")
transformer.transform(transform_input, content_type="text/csv", job_name=job_name)
with timeout_and_delete_model_with_transformer(
transformer, sagemaker_session, minutes=TRANSFORM_DEFAULT_TIMEOUT_MINUTES
):
assert transformer.output_path == "s3://{}/{}".format(
sagemaker_session.default_bucket(), job_name
)
job_name = unique_name_from_base("test-mxnet-transform")
transformer.transform(transform_input, content_type="text/csv", job_name=job_name)
assert transformer.output_path == "s3://{}/{}".format(
sagemaker_session.default_bucket(), job_name
)


def _create_transformer_and_transform_job(
estimator,
transform_input,
Expand Down
12 changes: 12 additions & 0 deletions tests/unit/test_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -437,3 +437,15 @@ def test_transform_job_wait(sagemaker_session):
job.wait()

assert sagemaker_session.wait_for_transform_job.called_once


@patch("sagemaker.transformer._TransformJob.start_new")
def test_restart_output_path(start_new_job, transformer, sagemaker_session):
transformer.output_path = None
sagemaker_session.default_bucket.return_value = S3_BUCKET

transformer.transform(DATA, job_name="job-1")
assert transformer.output_path == "s3://{}/{}".format(S3_BUCKET, "job-1")

transformer.transform(DATA, job_name="job-2")
assert transformer.output_path == "s3://{}/{}".format(S3_BUCKET, "job-2")