Skip to content

change: moving not canary TFS tests to local mode #870

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 21, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 30 additions & 32 deletions tests/integ/test_tfs.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,54 +60,52 @@ def tar_dir(directory, tmpdir):


@pytest.fixture
def tfs_predictor_with_model_and_entry_point_same_tar(instance_type,
sagemaker_session,
def tfs_predictor_with_model_and_entry_point_same_tar(sagemaker_local_session,
tf_full_version,
tmpdir):
endpoint_name = sagemaker.utils.unique_name_from_base('sagemaker-tensorflow-serving')

model_tar = tar_dir(os.path.join(tests.integ.DATA_DIR, 'tfs/tfs-test-model-with-inference'),
tmpdir)

model_data = sagemaker_session.upload_data(
path=model_tar,
key_prefix='tensorflow-serving/models')
model = Model(model_data='file://' + model_tar,
role='SageMakerRole',
framework_version=tf_full_version,
sagemaker_session=sagemaker_local_session)
predictor = model.deploy(1, 'local', endpoint_name=endpoint_name)

with tests.integ.timeout.timeout_and_delete_endpoint_by_name(endpoint_name,
sagemaker_session):
model = Model(model_data=model_data,
role='SageMakerRole',
framework_version=tf_full_version,
sagemaker_session=sagemaker_session)
predictor = model.deploy(1, instance_type, endpoint_name=endpoint_name)
try:
yield predictor
finally:
predictor.delete_endpoint()


@pytest.fixture(scope='module')
def tfs_predictor_with_model_and_entry_point_and_dependencies(instance_type,
sagemaker_session, tf_full_version):
def tfs_predictor_with_model_and_entry_point_and_dependencies(sagemaker_local_session,
tf_full_version):
endpoint_name = sagemaker.utils.unique_name_from_base('sagemaker-tensorflow-serving')

model_data = sagemaker_session.upload_data(
path=os.path.join(tests.integ.DATA_DIR,
'tensorflow-serving-test-model.tar.gz'),
key_prefix='tensorflow-serving/models')
entry_point = os.path.join(tests.integ.DATA_DIR,
'tfs/tfs-test-entrypoint-and-dependencies/inference.py')
dependencies = [os.path.join(tests.integ.DATA_DIR,
'tfs/tfs-test-entrypoint-and-dependencies/dependency.py')]

model_data = 'file://' + os.path.join(tests.integ.DATA_DIR,
'tensorflow-serving-test-model.tar.gz')

model = Model(entry_point=entry_point,
model_data=model_data,
role='SageMakerRole',
dependencies=dependencies,
framework_version=tf_full_version,
sagemaker_session=sagemaker_local_session)

predictor = model.deploy(1, 'local', endpoint_name=endpoint_name)
try:

with tests.integ.timeout.timeout_and_delete_endpoint_by_name(endpoint_name,
sagemaker_session):
entry_point = os.path.join(tests.integ.DATA_DIR,
'tfs/tfs-test-entrypoint-and-dependencies/inference.py')
dependencies = [os.path.join(tests.integ.DATA_DIR,
'tfs/tfs-test-entrypoint-and-dependencies/dependency.py')]

model = Model(entry_point=entry_point,
model_data=model_data,
role='SageMakerRole',
dependencies=dependencies,
framework_version=tf_full_version,
sagemaker_session=sagemaker_session)
predictor = model.deploy(1, instance_type, endpoint_name=endpoint_name)
yield predictor
finally:
predictor.delete_endpoint()


@pytest.fixture(scope='module')
Expand Down