Skip to content

feature: repack_model support dependencies and code location #821

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
May 30, 2019
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 17 additions & 13 deletions src/sagemaker/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -448,21 +448,25 @@ def _upload_code(self, key_prefix, repack=False):
local_code = utils.get_config_value('local.local_code', self.sagemaker_session.config)
if self.sagemaker_session.local_mode and local_code:
self.uploaded_code = None
else:
if not repack:
bucket = self.bucket or self.sagemaker_session.default_bucket()
self.uploaded_code = fw_utils.tar_and_upload_dir(session=self.sagemaker_session.boto_session,
bucket=bucket,
s3_key_prefix=key_prefix,
script=self.entry_point,
directory=self.source_dir,
dependencies=self.dependencies)
elif not repack:
bucket = self.bucket or self.sagemaker_session.default_bucket()
self.uploaded_code = fw_utils.tar_and_upload_dir(session=self.sagemaker_session.boto_session,
bucket=bucket,
s3_key_prefix=key_prefix,
script=self.entry_point,
directory=self.source_dir,
dependencies=self.dependencies)

if repack:
self.repacked_model_data = utils.repack_model(inference_script=self.entry_point,
source_directory=self.source_dir,
model_uri=self.model_data,
sagemaker_session=self.sagemaker_session)
bucket = self.bucket or self.sagemaker_session.default_bucket()
self.repacked_model_data = 's3://' + os.path.join(bucket, key_prefix, 'model.tar.gz')
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should this assignment happen after the repack_model function finishes successfully?

This can be a problem in a notebook, where state is stored even with exceptions happening.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Great call.


utils.repack_model(inference_script=self.entry_point,
source_directory=self.source_dir,
dependencies=self.dependencies,
model_uri=self.model_data,
repacked_model_uri=self.repacked_model_data,
sagemaker_session=self.sagemaker_session)
self.uploaded_code = UploadedCode(s3_prefix=self.repacked_model_data,
script_name=os.path.basename(self.entry_point))

Expand Down
16 changes: 12 additions & 4 deletions src/sagemaker/tensorflow/serving.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
from __future__ import absolute_import

import logging
import os

import sagemaker
from sagemaker.content_types import CONTENT_TYPE_JSON
Expand Down Expand Up @@ -128,10 +129,17 @@ def prepare_container_def(self, instance_type, accelerator_type=None):
env = self._get_container_env()

if self.entry_point:
model_data = sagemaker.utils.repack_model(self.entry_point,
self.source_dir,
self.model_data,
self.sagemaker_session)
key_prefix = sagemaker.fw_utils.model_code_key_prefix(self.key_prefix, self.name, image)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I see there are unit tests added in test_mxnet, but do we need to have unit test for serving.py and model.py class as well?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good call, I will do it.


bucket = self.bucket or self.sagemaker_session.default_bucket()
model_data = 's3://' + os.path.join(bucket, key_prefix, 'model.tar.gz')

sagemaker.utils.repack_model(self.entry_point,
self.source_dir,
self.dependencies,
self.model_data,
model_data,
self.sagemaker_session)
else:
model_data = self.model_data

Expand Down
109 changes: 71 additions & 38 deletions src/sagemaker/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,8 +29,6 @@

import six

import sagemaker

ECR_URI_PATTERN = r'^(\d+)(\.)dkr(\.)ecr(\.)(.+)(\.)(amazonaws.com|c2s.ic.gov)(/)(.*:.*)$'


Expand Down Expand Up @@ -300,7 +298,12 @@ def _tmpdir(suffix='', prefix='tmp'):
shutil.rmtree(tmp)


def repack_model(inference_script, source_directory, model_uri, sagemaker_session):
def repack_model(inference_script,
source_directory,
dependencies,
model_uri,
repacked_model_uri,
sagemaker_session):
"""Unpack model tarball and creates a new model tarball with the provided code script.

This function does the following:
Expand All @@ -311,60 +314,90 @@ def repack_model(inference_script, source_directory, model_uri, sagemaker_sessio
Args:
inference_script (str): path or basename of the inference script that will be packed into the model
source_directory (str): path including all the files that will be packed into the model
dependencies (list[str]): A list of paths to directories (absolute or relative) with
any additional libraries that will be exported to the container (default: []).
The library folders will be copied to SageMaker in the same folder where the entrypoint is copied.
Example:

The following call
>>> Estimator(entry_point='train.py', dependencies=['my/libs/common', 'virtual-env'])
results in the following inside the container:

>>> $ ls

>>> opt/ml/code
>>> |------ train.py
>>> |------ common
>>> |------ virtual-env

repacked_model_uri (str): path or file system location where the new model will be saved
model_uri (str): S3 or file system location of the original model tar
sagemaker_session (:class:`sagemaker.session.Session`): a sagemaker session to interact with S3.

Returns:
str: path to the new packed model
"""
new_model_name = 'model-%s.tar.gz' % sagemaker.utils.sagemaker_short_timestamp()
dependencies = dependencies or []

with _tmpdir() as tmp:
tmp_model_dir = os.path.join(tmp, 'model')
os.mkdir(tmp_model_dir)
model_dir = _extract_model(model_uri, sagemaker_session, tmp)

model_from_s3 = model_uri.lower().startswith('s3://')
if model_from_s3:
local_model_path = os.path.join(tmp, 'tar_file')
download_file_from_url(model_uri, local_model_path, sagemaker_session)
_update_code(model_dir, inference_script, source_directory, dependencies, sagemaker_session, tmp)

new_model_path = os.path.join(tmp, new_model_name)
else:
local_model_path = model_uri.replace('file://', '')
new_model_path = os.path.join(os.path.dirname(local_model_path), new_model_name)
tmp_model_path = os.path.join(tmp, 'temp-model.tar.gz')
with tarfile.open(tmp_model_path, mode='w:gz') as t:
t.add(model_dir, arcname=os.path.sep)

with tarfile.open(name=local_model_path, mode='r:gz') as t:
t.extractall(path=tmp_model_dir)
_save_model(repacked_model_uri, tmp_model_path, sagemaker_session)

code_dir = os.path.join(tmp_model_dir, 'code')
if os.path.exists(code_dir):
shutil.rmtree(code_dir, ignore_errors=True)

if source_directory and source_directory.lower().startswith('s3://'):
local_code_path = os.path.join(tmp, 'local_code.tar.gz')
download_file_from_url(source_directory, local_code_path, sagemaker_session)
def _save_model(repacked_model_uri, tmp_model_path, sagemaker_session):
if repacked_model_uri.lower().startswith('s3://'):
url = parse.urlparse(repacked_model_uri)
bucket, key = url.netloc, url.path.lstrip('/')
new_key = key.replace(os.path.basename(key), os.path.basename(repacked_model_uri))

with tarfile.open(name=local_code_path, mode='r:gz') as t:
t.extractall(path=code_dir)
sagemaker_session.boto_session.resource('s3').Object(bucket, new_key).upload_file(
tmp_model_path)
else:
shutil.move(tmp_model_path, repacked_model_uri.replace('file://', ''))

elif source_directory:
shutil.copytree(source_directory, code_dir)
else:
os.mkdir(code_dir)
shutil.copy2(inference_script, code_dir)

with tarfile.open(new_model_path, mode='w:gz') as t:
t.add(tmp_model_dir, arcname=os.path.sep)
def _update_code(model_dir, inference_script, source_directory, dependencies, sagemaker_session, tmp):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this method name doesn't seem entirely indicative of what is going on.

I don't have any suggestions, but this method is mainly copying files to a certain directory and not necessarily updating 'code'.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Agreed. Renamed to _create_or_update_code_dir.

code_dir = os.path.join(model_dir, 'code')
if os.path.exists(code_dir):
shutil.rmtree(code_dir, ignore_errors=True)
if source_directory and source_directory.lower().startswith('s3://'):
local_code_path = os.path.join(tmp, 'local_code.tar.gz')
download_file_from_url(source_directory, local_code_path, sagemaker_session)

with tarfile.open(name=local_code_path, mode='r:gz') as t:
t.extractall(path=code_dir)

if model_from_s3:
url = parse.urlparse(model_uri)
bucket, key = url.netloc, url.path.lstrip('/')
new_key = key.replace(os.path.basename(key), new_model_name)
elif source_directory:
shutil.copytree(source_directory, code_dir)
else:
os.mkdir(code_dir)
shutil.copy2(inference_script, code_dir)

sagemaker_session.boto_session.resource('s3').Object(bucket, new_key).upload_file(new_model_path)
return 's3://%s/%s' % (bucket, new_key)
for dependency in dependencies:
if os.path.isdir(dependency):
shutil.copytree(dependency, code_dir)
else:
return 'file://%s' % new_model_path
shutil.copy2(dependency, code_dir)


def _extract_model(model_uri, sagemaker_session, tmp):
tmp_model_dir = os.path.join(tmp, 'model')
os.mkdir(tmp_model_dir)
if model_uri.lower().startswith('s3://'):
local_model_path = os.path.join(tmp, 'tar_file')
download_file_from_url(model_uri, local_model_path, sagemaker_session)
else:
local_model_path = model_uri.replace('file://', '')
with tarfile.open(name=local_model_path, mode='r:gz') as t:
t.extractall(path=tmp_model_dir)
return tmp_model_dir


def download_file_from_url(url, dst, sagemaker_session):
Expand Down
18 changes: 10 additions & 8 deletions tests/unit/test_mxnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@
DATA_DIR = os.path.join(os.path.dirname(__file__), '..', 'data')
SCRIPT_PATH = os.path.join(DATA_DIR, 'dummy_script.py')
MODEL_DATA = 's3://mybucket/model'
REPACKED_MODEL_DATA = 's3://mybucket/repacked/model'
TIMESTAMP = '2017-11-06-14:14:15.672'
TIME = 1507167947
BUCKET_NAME = 'mybucket'
Expand Down Expand Up @@ -280,7 +279,7 @@ def test_mxnet(strftime, sagemaker_session, mxnet_version, skip_if_mms_version):
assert isinstance(predictor, MXNetPredictor)


@patch('sagemaker.utils.repack_model', return_value=REPACKED_MODEL_DATA)
@patch('sagemaker.utils.repack_model')
@patch('time.strftime', return_value=TIMESTAMP)
def test_mxnet_mms_version(strftime, repack_model, sagemaker_session, mxnet_version, skip_if_not_mms_version):
mx = MXNet(entry_point=SCRIPT_PATH, role=ROLE, sagemaker_session=sagemaker_session,
Expand All @@ -307,11 +306,12 @@ def test_mxnet_mms_version(strftime, repack_model, sagemaker_session, mxnet_vers
expected_image_base = _get_full_image_uri(mxnet_version, IMAGE_REPO_SERVING_NAME, 'gpu')
environment = {
'Environment': {
'SAGEMAKER_SUBMIT_DIRECTORY': REPACKED_MODEL_DATA,
'SAGEMAKER_SUBMIT_DIRECTORY': 's3://mybucket/sagemaker-mxnet-2017-11-06-14:14:15.672/model.tar.gz',
'SAGEMAKER_PROGRAM': 'dummy_script.py', 'SAGEMAKER_ENABLE_CLOUDWATCH_METRICS': 'false',
'SAGEMAKER_REGION': 'us-west-2', 'SAGEMAKER_CONTAINER_LOG_LEVEL': '20'
},
'Image': expected_image_base.format(mxnet_version), 'ModelDataUrl': REPACKED_MODEL_DATA
'Image': expected_image_base.format(mxnet_version),
'ModelDataUrl': 's3://mybucket/sagemaker-mxnet-2017-11-06-14:14:15.672/model.tar.gz'
}
assert environment == model.prepare_container_def(GPU)

Expand Down Expand Up @@ -366,21 +366,23 @@ def test_model(sagemaker_session):
assert isinstance(predictor, MXNetPredictor)


@patch('sagemaker.utils.repack_model', return_value=REPACKED_MODEL_DATA)
@patch('sagemaker.utils.repack_model')
def test_model_mms_version(repack_model, sagemaker_session):
model = MXNetModel(MODEL_DATA, role=ROLE, entry_point=SCRIPT_PATH,
framework_version=MXNetModel._LOWEST_MMS_VERSION,
sagemaker_session=sagemaker_session)
sagemaker_session=sagemaker_session, name='test-mxnet-model')
predictor = model.deploy(1, GPU)

repack_model.assert_called_once_with(inference_script=SCRIPT_PATH,
source_directory=None,
dependencies=[],
model_uri=MODEL_DATA,
repacked_model_uri='s3://mybucket/test-mxnet-model/model.tar.gz',
sagemaker_session=sagemaker_session)

assert model.model_data == MODEL_DATA
assert model.repacked_model_data == REPACKED_MODEL_DATA
assert model.uploaded_code == UploadedCode(s3_prefix=REPACKED_MODEL_DATA,
assert model.repacked_model_data == 's3://mybucket/test-mxnet-model/model.tar.gz'
assert model.uploaded_code == UploadedCode(s3_prefix='s3://mybucket/test-mxnet-model/model.tar.gz',
script_name=os.path.basename(SCRIPT_PATH))
assert isinstance(predictor, MXNetPredictor)

Expand Down
Loading