Skip to content

feature: allow custom model name during deploy #792

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jul 8, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion src/sagemaker/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -392,6 +392,7 @@ def deploy(
use_compiled_model=False,
update_endpoint=False,
wait=True,
model_name=None,
**kwargs
):
"""Deploy the trained model to an Amazon SageMaker endpoint and return a ``sagemaker.RealTimePredictor`` object.
Expand All @@ -413,11 +414,13 @@ def deploy(
update_endpoint (bool): Flag to update the model in an existing Amazon SageMaker endpoint.
If True, this will deploy a new EndpointConfig to an already existing endpoint and delete resources
corresponding to the previous EndpointConfig. Default: False
wait (bool): Whether the call should wait until the deployment of model completes (default: True).
model_name (str): Name to use for creating an Amazon SageMaker model. If not specified, the name of
the training job is used.
tags(List[dict[str, str]]): Optional. The list of tags to attach to this specific endpoint. Example:
>>> tags = [{'Key': 'tagname', 'Value': 'tagvalue'}]
For more information about tags, see https://boto3.amazonaws.com/v1/documentation\
/api/latest/reference/services/sagemaker.html#SageMaker.Client.add_tags
wait (bool): Whether the call should wait until the deployment of model completes (default: True).

**kwargs: Passed to invocation of ``create_model()``. Implementations may customize
``create_model()`` to accept ``**kwargs`` to customize model creation during deploy.
Expand All @@ -429,6 +432,7 @@ def deploy(
"""
self._ensure_latest_training_job()
endpoint_name = endpoint_name or self.latest_training_job.name
model_name = model_name or self.latest_training_job.name
self.deploy_instance_type = instance_type
if use_compiled_model:
family = "_".join(instance_type.split(".")[:-1])
Expand All @@ -440,6 +444,7 @@ def deploy(
model = self._compiled_models[family]
else:
model = self.create_model(**kwargs)
model.name = model_name
return model.deploy(
instance_type=instance_type,
initial_instance_count=initial_instance_count,
Expand Down
4 changes: 4 additions & 0 deletions src/sagemaker/tuner.py
Original file line number Diff line number Diff line change
Expand Up @@ -375,6 +375,7 @@ def deploy(
accelerator_type=None,
endpoint_name=None,
wait=True,
model_name=None,
**kwargs
):
"""Deploy the best trained or user specified model to an Amazon SageMaker endpoint and return a
Expand All @@ -393,6 +394,8 @@ def deploy(
endpoint_name (str): Name to use for creating an Amazon SageMaker endpoint. If not specified,
the name of the training job is used.
wait (bool): Whether the call should wait until the deployment of model completes (default: True).
model_name (str): Name to use for creating an Amazon SageMaker model. If not specified, the name of
the training job is used.
**kwargs: Other arguments needed for deployment. Please refer to the ``create_model()`` method of
the associated estimator to see what other arguments are needed.

Expand All @@ -410,6 +413,7 @@ def deploy(
accelerator_type=accelerator_type,
endpoint_name=endpoint_name,
wait=wait,
model_name=model_name,
**kwargs
)

Expand Down
14 changes: 13 additions & 1 deletion tests/integ/test_tf_script_mode.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,6 +159,7 @@ def test_mnist_async(sagemaker_session):
training_job_name = estimator.latest_training_job.name
time.sleep(20)
endpoint_name = training_job_name
model_name = "model-name-1"
_assert_training_job_tags_match(
sagemaker_session.sagemaker_client, estimator.latest_training_job.name, TAGS
)
Expand All @@ -167,7 +168,10 @@ def test_mnist_async(sagemaker_session):
training_job_name=training_job_name, sagemaker_session=sagemaker_session
)
predictor = estimator.deploy(
initial_instance_count=1, instance_type="ml.c4.xlarge", endpoint_name=endpoint_name
initial_instance_count=1,
instance_type="ml.c4.xlarge",
endpoint_name=endpoint_name,
model_name=model_name,
)

result = predictor.predict(np.zeros(784))
Expand All @@ -176,6 +180,7 @@ def test_mnist_async(sagemaker_session):
_assert_model_tags_match(
sagemaker_session.sagemaker_client, estimator.latest_training_job.name, TAGS
)
_assert_model_name_match(sagemaker_session.sagemaker_client, endpoint_name, model_name)


def test_deploy_with_input_handlers(sagemaker_session, instance_type):
Expand Down Expand Up @@ -241,3 +246,10 @@ def _assert_training_job_tags_match(sagemaker_client, training_job_name, tags):
TrainingJobName=training_job_name
)
_assert_tags_match(sagemaker_client, training_job_description["TrainingJobArn"], tags)


def _assert_model_name_match(sagemaker_client, endpoint_config_name, model_name):
endpoint_config_description = sagemaker_client.describe_endpoint_config(
EndpointConfigName=endpoint_config_name
)
assert model_name == endpoint_config_description["ProductionVariants"][0]["ModelName"]
17 changes: 14 additions & 3 deletions tests/integ/test_tuner.py
Original file line number Diff line number Diff line change
Expand Up @@ -843,14 +843,17 @@ def test_attach_tuning_pytorch(sagemaker_session):
time.sleep(15)
tuner.wait()

endpoint_name = tuning_job_name
model_name = "model-name-1"
attached_tuner = HyperparameterTuner.attach(
tuning_job_name, sagemaker_session=sagemaker_session
)
assert attached_tuner.early_stopping_type == "Auto"

best_training_job = tuner.best_training_job()
with timeout_and_delete_endpoint_by_name(best_training_job, sagemaker_session):
predictor = attached_tuner.deploy(1, "ml.c4.xlarge")
with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
predictor = attached_tuner.deploy(
1, "ml.c4.xlarge", endpoint_name=endpoint_name, model_name=model_name
)
data = np.zeros(shape=(1, 1, 28, 28), dtype=np.float32)
predictor.predict(data)

Expand All @@ -859,6 +862,7 @@ def test_attach_tuning_pytorch(sagemaker_session):
output = predictor.predict(data)

assert output.shape == (batch_size, 10)
_assert_model_name_match(sagemaker_session.sagemaker_client, endpoint_name, model_name)


@pytest.mark.canary_quick
Expand Down Expand Up @@ -941,3 +945,10 @@ def _fm_serializer(data):
for row in data:
js["instances"].append({"features": row.tolist()})
return json.dumps(js)


def _assert_model_name_match(sagemaker_client, endpoint_config_name, model_name):
endpoint_config_description = sagemaker_client.describe_endpoint_config(
EndpointConfigName=endpoint_config_name
)
assert model_name == endpoint_config_description["ProductionVariants"][0]["ModelName"]
37 changes: 37 additions & 0 deletions tests/unit/test_estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -1711,6 +1711,43 @@ def test_deploy_with_update_endpoint(sagemaker_session):
sagemaker_session.create_endpoint.assert_not_called()


def test_deploy_with_model_name(sagemaker_session):
estimator = Estimator(
IMAGE_NAME,
ROLE,
INSTANCE_COUNT,
INSTANCE_TYPE,
output_path=OUTPUT_PATH,
sagemaker_session=sagemaker_session,
)
estimator.set_hyperparameters(**HYPERPARAMS)
estimator.fit({"train": "s3://bucket/training-prefix"})
model_name = "model-name"
estimator.deploy(INSTANCE_COUNT, INSTANCE_TYPE, model_name=model_name)

sagemaker_session.create_model.assert_called_once()
args, kwargs = sagemaker_session.create_model.call_args
assert args[0] == model_name


def test_deploy_with_no_model_name(sagemaker_session):
estimator = Estimator(
IMAGE_NAME,
ROLE,
INSTANCE_COUNT,
INSTANCE_TYPE,
output_path=OUTPUT_PATH,
sagemaker_session=sagemaker_session,
)
estimator.set_hyperparameters(**HYPERPARAMS)
estimator.fit({"train": "s3://bucket/training-prefix"})
estimator.deploy(INSTANCE_COUNT, INSTANCE_TYPE)

sagemaker_session.create_model.assert_called_once()
args, kwargs = sagemaker_session.create_model.call_args
assert args[0].startswith(IMAGE_NAME)


@patch("sagemaker.estimator.LocalSession")
@patch("sagemaker.estimator.Session")
def test_local_mode(session_class, local_session_class):
Expand Down
3 changes: 2 additions & 1 deletion tests/unit/test_tuner.py
Original file line number Diff line number Diff line change
Expand Up @@ -645,7 +645,8 @@ def test_deploy_default(tuner):

tuner.estimator.sagemaker_session.create_model.assert_called_once()
args = tuner.estimator.sagemaker_session.create_model.call_args[0]
assert args[0].startswith(IMAGE_NAME)

assert args[0] == "neo"
assert args[1] == ROLE
assert args[2]["Image"] == IMAGE_NAME
assert args[2]["ModelDataUrl"] == MODEL_DATA
Expand Down