Skip to content

Add support for Hyperparameter Tuning Early Stopping #550

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Dec 13, 2018
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions CHANGELOG.rst
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,8 @@
CHANGELOG
=========

1.16.2.dev
==========
1.16.2
======

* enhancement: Check for S3 paths being passed as entry point
* feature: Add support for AugmentedManifestFile and ShuffleConfig
Expand All @@ -15,6 +15,7 @@ CHANGELOG
* bug-fix: Update PyYAML version to avoid conflicts with docker-compose
* doc-fix: Correct the numbered list in the table of contents
* doc-fix: Add Airflow API documentation
* feature: HyperparameterTuner: add Early Stopping support

1.16.1.post1
============
Expand Down
16 changes: 16 additions & 0 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -614,6 +614,22 @@ A hyperparameter range can be one of three types: continuous, integer, or catego
The SageMaker Python SDK provides corresponding classes for defining these different types.
You can define up to 20 hyperparameters to search over, but each value of a categorical hyperparameter range counts against that limit.

By default, training job early stopping is turned off. To enable early stopping for the tuning job, you need to set the ``early_stopping_type`` parameter to ``Auto``:

.. code:: python

# Enable early stopping
my_tuner = HyperparameterTuner(estimator=my_estimator, # previously-configured Estimator object
objective_metric_name='validation-accuracy',
hyperparameter_ranges={'learning-rate': ContinuousParameter(0.05, 0.06)},
metric_definitions=[{'Name': 'validation-accuracy', 'Regex': 'validation-accuracy=(\d\.\d+)'}],
max_jobs=100,
max_parallel_jobs=10,
early_stopping_type='Auto')

When early stopping is turned on, Amazon SageMaker will automatically stop a training job if it appears unlikely to produce a model of better quality than other jobs.
If not using built-in Amazon SageMaker algorithms, note that, for early stopping to be effective, the objective metric should be emitted at epoch level.

If you are using an Amazon SageMaker built-in algorithm, you don't need to pass in anything for ``metric_definitions``.
In addition, the ``fit()`` call uses a list of ``RecordSet`` objects instead of a dictionary:

Expand Down
2 changes: 1 addition & 1 deletion doc/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def __getattr__(cls, name):
'numpy', 'scipy', 'scipy.sparse']
sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES)

version = '1.16.1.post1'
version = '1.16.2'
project = u'sagemaker'

# Add any Sphinx extension module names here, as strings. They can be extensions
Expand Down
2 changes: 1 addition & 1 deletion src/sagemaker/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,4 +39,4 @@
from sagemaker.session import s3_input # noqa: F401
from sagemaker.session import get_execution_role # noqa: F401

__version__ = '1.16.1.post1'
__version__ = '1.16.2'
7 changes: 6 additions & 1 deletion src/sagemaker/session.py
Original file line number Diff line number Diff line change
Expand Up @@ -350,7 +350,8 @@ def tune(self, job_name, strategy, objective_type, objective_metric_name,
max_jobs, max_parallel_jobs, parameter_ranges,
static_hyperparameters, input_mode, metric_definitions,
role, input_config, output_config, resource_config, stop_condition, tags,
warm_start_config, enable_network_isolation=False, image=None, algorithm_arn=None):
warm_start_config, enable_network_isolation=False, image=None, algorithm_arn=None,
early_stopping_type='Off'):
"""Create an Amazon SageMaker hyperparameter tuning job

Args:
Expand Down Expand Up @@ -396,6 +397,9 @@ def tune(self, job_name, strategy, objective_type, objective_metric_name,
https://docs.aws.amazon.com/sagemaker/latest/dg/API_Tag.html.
warm_start_config (dict): Configuration defining the type of warm start and
other required configurations.
early_stopping_type (str): Specifies whether early stopping is enabled for the job.
Can be either 'Auto' or 'Off'. If set to 'Off', early stopping will not be attempted.
If set to 'Auto', early stopping of some training jobs may happen, but is not guaranteed to.
"""
tune_request = {
'HyperParameterTuningJobName': job_name,
Expand All @@ -410,6 +414,7 @@ def tune(self, job_name, strategy, objective_type, objective_metric_name,
'MaxParallelTrainingJobs': max_parallel_jobs,
},
'ParameterRanges': parameter_ranges,
'TrainingJobEarlyStoppingType': early_stopping_type,
},
'TrainingJobDefinition': {
'StaticHyperParameters': static_hyperparameters,
Expand Down
10 changes: 8 additions & 2 deletions src/sagemaker/tuner.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,7 +165,7 @@ class HyperparameterTuner(object):

def __init__(self, estimator, objective_metric_name, hyperparameter_ranges, metric_definitions=None,
strategy='Bayesian', objective_type='Maximize', max_jobs=1, max_parallel_jobs=1,
tags=None, base_tuning_job_name=None, warm_start_config=None):
tags=None, base_tuning_job_name=None, warm_start_config=None, early_stopping_type='Off'):
"""Initialize a ``HyperparameterTuner``. It takes an estimator to obtain configuration information
for training jobs that are created as the result of a hyperparameter tuning job.

Expand Down Expand Up @@ -194,6 +194,9 @@ def __init__(self, estimator, objective_metric_name, hyperparameter_ranges, metr
a default job name is generated, based on the training image name and current timestamp.
warm_start_config (sagemaker.tuner.WarmStartConfig): A ``WarmStartConfig`` object that has been initialized
with the configuration defining the nature of warm start tuning job.
early_stopping_type (str): Specifies whether early stopping is enabled for the job.
Can be either 'Auto' or 'Off' (default: 'Off'). If set to 'Off', early stopping will not be attempted.
If set to 'Auto', early stopping of some training jobs may happen, but is not guaranteed to.
"""
self._hyperparameter_ranges = hyperparameter_ranges
if self._hyperparameter_ranges is None or len(self._hyperparameter_ranges) == 0:
Expand All @@ -214,6 +217,7 @@ def __init__(self, estimator, objective_metric_name, hyperparameter_ranges, metr
self._current_job_name = None
self.latest_tuning_job = None
self.warm_start_config = warm_start_config
self.early_stopping_type = early_stopping_type

def _prepare_for_training(self, job_name=None, include_cls_metadata=True):
if job_name is not None:
Expand Down Expand Up @@ -445,7 +449,8 @@ def _prepare_init_params_from_job_description(cls, job_details):
'strategy': tuning_config['Strategy'],
'max_jobs': tuning_config['ResourceLimits']['MaxNumberOfTrainingJobs'],
'max_parallel_jobs': tuning_config['ResourceLimits']['MaxParallelTrainingJobs'],
'warm_start_config': WarmStartConfig.from_job_desc(job_details.get('WarmStartConfig', None))
'warm_start_config': WarmStartConfig.from_job_desc(job_details.get('WarmStartConfig', None)),
'early_stopping_type': tuning_config['TrainingJobEarlyStoppingType']
}

@classmethod
Expand Down Expand Up @@ -625,6 +630,7 @@ def start_new(cls, tuner, inputs):
tuner_args['metric_definitions'] = tuner.metric_definitions
tuner_args['tags'] = tuner.tags
tuner_args['warm_start_config'] = warm_start_config_req
tuner_args['early_stopping_type'] = tuner.early_stopping_type

del tuner_args['vpc_config']
if isinstance(tuner.estimator, sagemaker.algorithm.AlgorithmEstimator):
Expand Down
30 changes: 21 additions & 9 deletions tests/integ/test_tuner.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,15 +83,16 @@ def hyperparameter_ranges():

def _tune_and_deploy(kmeans_estimator, kmeans_train_set, sagemaker_session,
hyperparameter_ranges=None, job_name=None,
warm_start_config=None):
warm_start_config=None, early_stopping_type='Off'):
tuner = _tune(kmeans_estimator, kmeans_train_set,
hyperparameter_ranges=hyperparameter_ranges, warm_start_config=warm_start_config,
job_name=job_name)
_deploy(kmeans_train_set, sagemaker_session, tuner)
job_name=job_name, early_stopping_type=early_stopping_type)
_deploy(kmeans_train_set, sagemaker_session, tuner, early_stopping_type)


def _deploy(kmeans_train_set, sagemaker_session, tuner):
def _deploy(kmeans_train_set, sagemaker_session, tuner, early_stopping_type):
best_training_job = tuner.best_training_job()
assert tuner.early_stopping_type == early_stopping_type
with timeout_and_delete_endpoint_by_name(best_training_job, sagemaker_session):
predictor = tuner.deploy(1, 'ml.c4.xlarge')

Expand All @@ -105,7 +106,7 @@ def _deploy(kmeans_train_set, sagemaker_session, tuner):

def _tune(kmeans_estimator, kmeans_train_set, tuner=None,
hyperparameter_ranges=None, job_name=None, warm_start_config=None,
wait_till_terminal=True, max_jobs=2, max_parallel_jobs=2):
wait_till_terminal=True, max_jobs=2, max_parallel_jobs=2, early_stopping_type='Off'):
with timeout(minutes=TUNING_DEFAULT_TIMEOUT_MINUTES):

if not tuner:
Expand All @@ -115,7 +116,8 @@ def _tune(kmeans_estimator, kmeans_train_set, tuner=None,
objective_type='Minimize',
max_jobs=max_jobs,
max_parallel_jobs=max_parallel_jobs,
warm_start_config=warm_start_config)
warm_start_config=warm_start_config,
early_stopping_type=early_stopping_type)

records = kmeans_estimator.record_set(kmeans_train_set[0][:100])
test_record_set = kmeans_estimator.record_set(kmeans_train_set[0][:100], channel='test')
Expand Down Expand Up @@ -332,16 +334,23 @@ def test_tuning_lda(sagemaker_session):
tuner = HyperparameterTuner(estimator=lda, objective_metric_name=objective_metric_name,
hyperparameter_ranges=hyperparameter_ranges,
objective_type='Maximize', max_jobs=2,
max_parallel_jobs=2)
max_parallel_jobs=2,
early_stopping_type='Auto')

tuning_job_name = unique_name_from_base('test-lda', max_length=32)
tuner.fit([record_set, test_record_set], mini_batch_size=1, job_name=tuning_job_name)

print('Started hyperparameter tuning job with name:' + tuner.latest_tuning_job.name)
latest_tuning_job_name = tuner.latest_tuning_job.name

print('Started hyperparameter tuning job with name:' + latest_tuning_job_name)

time.sleep(15)
tuner.wait()

desc = tuner.latest_tuning_job.sagemaker_session.sagemaker_client \
.describe_hyper_parameter_tuning_job(HyperParameterTuningJobName=latest_tuning_job_name)
assert desc['HyperParameterTuningJobConfig']['TrainingJobEarlyStoppingType'] == 'Auto'

best_training_job = tuner.best_training_job()
with timeout_and_delete_endpoint_by_name(best_training_job, sagemaker_session):
predictor = tuner.deploy(1, 'ml.c4.xlarge')
Expand Down Expand Up @@ -555,7 +564,8 @@ def test_attach_tuning_pytorch(sagemaker_session):

tuner = HyperparameterTuner(estimator, objective_metric_name, hyperparameter_ranges,
metric_definitions,
max_jobs=2, max_parallel_jobs=2)
max_jobs=2, max_parallel_jobs=2,
early_stopping_type='Auto')

training_data = estimator.sagemaker_session.upload_data(
path=os.path.join(mnist_dir, 'training'),
Expand All @@ -571,6 +581,8 @@ def test_attach_tuning_pytorch(sagemaker_session):

attached_tuner = HyperparameterTuner.attach(tuning_job_name,
sagemaker_session=sagemaker_session)
assert attached_tuner.early_stopping_type == 'Auto'

best_training_job = tuner.best_training_job()
with timeout_and_delete_endpoint_by_name(best_training_job, sagemaker_session):
predictor = attached_tuner.deploy(1, 'ml.c4.xlarge')
Expand Down
1 change: 1 addition & 0 deletions tests/unit/test_session.py
Original file line number Diff line number Diff line change
Expand Up @@ -301,6 +301,7 @@ def test_train_pack_to_request(sagemaker_session):
'MaxParallelTrainingJobs': 5,
},
'ParameterRanges': SAMPLE_PARAM_RANGES,
'TrainingJobEarlyStoppingType': 'Off'
},
'TrainingJobDefinition': {
'StaticHyperParameters': STATIC_HPs,
Expand Down
34 changes: 33 additions & 1 deletion tests/unit/test_tuner.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,8 @@
'MinValue': '10',
},
]
}
},
'TrainingJobEarlyStoppingType': 'Off'
},
'HyperParameterTuningJobName': JOB_NAME,
'TrainingJobDefinition': {
Expand Down Expand Up @@ -241,9 +242,26 @@ def test_fit_pca(sagemaker_session, tuner):
assert len(tune_kwargs['parameter_ranges']['IntegerParameterRanges']) == 1
assert tune_kwargs['job_name'].startswith('pca')
assert tune_kwargs['tags'] == tags
assert tune_kwargs['early_stopping_type'] == 'Off'
assert tuner.estimator.mini_batch_size == 9999


def test_fit_pca_with_early_stopping(sagemaker_session, tuner):
pca = PCA(ROLE, TRAIN_INSTANCE_COUNT, TRAIN_INSTANCE_TYPE, NUM_COMPONENTS,
base_job_name='pca', sagemaker_session=sagemaker_session)

tuner.estimator = pca
tuner.early_stopping_type = 'Auto'

records = RecordSet(s3_data=INPUTS, num_records=1, feature_dim=1)
tuner.fit(records, mini_batch_size=9999)

_, _, tune_kwargs = sagemaker_session.tune.mock_calls[0]

assert tune_kwargs['job_name'].startswith('pca')
assert tune_kwargs['early_stopping_type'] == 'Auto'


def test_attach_tuning_job_with_estimator_from_hyperparameters(sagemaker_session):
job_details = copy.deepcopy(TUNING_JOB_DETAILS)
sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job = Mock(name='describe_tuning_job',
Expand All @@ -257,6 +275,7 @@ def test_attach_tuning_job_with_estimator_from_hyperparameters(sagemaker_session
assert tuner.metric_definitions == METRIC_DEFINTIONS
assert tuner.strategy == 'Bayesian'
assert tuner.objective_type == 'Minimize'
assert tuner.early_stopping_type == 'Off'

assert isinstance(tuner.estimator, PCA)
assert tuner.estimator.role == ROLE
Expand All @@ -270,6 +289,19 @@ def test_attach_tuning_job_with_estimator_from_hyperparameters(sagemaker_session
assert tuner.estimator.hyperparameters()['num_components'] == '1'


def test_attach_tuning_job_with_estimator_from_hyperparameters_with_early_stopping(sagemaker_session):
job_details = copy.deepcopy(TUNING_JOB_DETAILS)
job_details['HyperParameterTuningJobConfig']['TrainingJobEarlyStoppingType'] = 'Auto'
sagemaker_session.sagemaker_client.describe_hyper_parameter_tuning_job = Mock(name='describe_tuning_job',
return_value=job_details)
tuner = HyperparameterTuner.attach(JOB_NAME, sagemaker_session=sagemaker_session)

assert tuner.latest_tuning_job.name == JOB_NAME
assert tuner.early_stopping_type == 'Auto'

assert isinstance(tuner.estimator, PCA)


def test_attach_tuning_job_with_job_details(sagemaker_session):
job_details = copy.deepcopy(TUNING_JOB_DETAILS)
HyperparameterTuner.attach(JOB_NAME, sagemaker_session=sagemaker_session, job_details=job_details)
Expand Down