Skip to content

feat: s3 prefix model data for JumpStartModel #4135

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 22 additions & 4 deletions src/sagemaker/jumpstart/factory/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
# language governing permissions and limitations under the License.
"""This module stores JumpStart Model factory methods."""
from __future__ import absolute_import
import json


from typing import Any, Dict, List, Optional, Union
Expand Down Expand Up @@ -206,9 +207,7 @@ def _add_image_uri_to_kwargs(kwargs: JumpStartModelInitKwargs) -> JumpStartModel
def _add_model_data_to_kwargs(kwargs: JumpStartModelInitKwargs) -> JumpStartModelInitKwargs:
"""Sets model data based on default or override, returns full kwargs."""

model_data = kwargs.model_data

kwargs.model_data = model_data or model_uris.retrieve(
model_data: Union[str, dict] = kwargs.model_data or model_uris.retrieve(
model_scope=JumpStartScriptScope.INFERENCE,
model_id=kwargs.model_id,
model_version=kwargs.model_version,
Expand All @@ -218,6 +217,25 @@ def _add_model_data_to_kwargs(kwargs: JumpStartModelInitKwargs) -> JumpStartMode
sagemaker_session=kwargs.sagemaker_session,
)

if isinstance(model_data, str) and model_data.startswith("s3://") and model_data.endswith("/"):
old_model_data_str = model_data
model_data = {
"S3DataSource": {
"S3Uri": model_data,
"S3DataType": "S3Prefix",
"CompressionType": "None",
}
}
if kwargs.model_data:
JUMPSTART_LOGGER.info(
"S3 prefix model_data detected for JumpStartModel: '%s'. "
"Converting to S3DataSource dictionary: '%s'.",
old_model_data_str,
json.dumps(model_data),
)

kwargs.model_data = model_data

return kwargs


Expand Down Expand Up @@ -496,7 +514,7 @@ def get_init_kwargs(
instance_type: Optional[str] = None,
region: Optional[str] = None,
image_uri: Optional[Union[str, PipelineVariable]] = None,
model_data: Optional[Union[str, PipelineVariable]] = None,
model_data: Optional[Union[str, PipelineVariable, dict]] = None,
role: Optional[str] = None,
predictor_cls: Optional[callable] = None,
env: Optional[Dict[str, Union[str, PipelineVariable]]] = None,
Expand Down
6 changes: 3 additions & 3 deletions src/sagemaker/jumpstart/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def __init__(
region: Optional[str] = None,
instance_type: Optional[str] = None,
image_uri: Optional[Union[str, PipelineVariable]] = None,
model_data: Optional[Union[str, PipelineVariable]] = None,
model_data: Optional[Union[str, PipelineVariable, dict]] = None,
role: Optional[str] = None,
predictor_cls: Optional[callable] = None,
env: Optional[Dict[str, Union[str, PipelineVariable]]] = None,
Expand Down Expand Up @@ -95,8 +95,8 @@ def __init__(
instance_type (Optional[str]): The EC2 instance type to use when provisioning a hosting
endpoint. (Default: None).
image_uri (Optional[Union[str, PipelineVariable]]): A Docker image URI. (Default: None).
model_data (Optional[Union[str, PipelineVariable]]): The S3 location of a SageMaker
model data ``.tar.gz`` file. (Default: None).
model_data (Optional[Union[str, PipelineVariable, dict]]): Location
of SageMaker model data. (Default: None).
role (Optional[str]): An AWS IAM role (either name or full ARN). The Amazon
SageMaker training jobs and APIs that create Amazon SageMaker
endpoints use this role to access training data and model
Expand Down
2 changes: 1 addition & 1 deletion src/sagemaker/jumpstart/types.py
Original file line number Diff line number Diff line change
Expand Up @@ -752,7 +752,7 @@ def __init__(
region: Optional[str] = None,
instance_type: Optional[str] = None,
image_uri: Optional[Union[str, Any]] = None,
model_data: Optional[Union[str, Any]] = None,
model_data: Optional[Union[str, Any, dict]] = None,
role: Optional[str] = None,
predictor_cls: Optional[callable] = None,
env: Optional[Dict[str, Union[str, Any]]] = None,
Expand Down
87 changes: 87 additions & 0 deletions tests/unit/sagemaker/jumpstart/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -1708,6 +1708,93 @@
"default_accept_type": "application/json",
},
},
"model_data_s3_prefix_model": {
"model_id": "huggingface-text2text-flan-t5-xxl-fp16",
"url": "https://huggingface.co/google/flan-t5-xxl",
"version": "1.0.1",
"min_sdk_version": "2.130.0",
"training_supported": False,
"incremental_training_supported": False,
"hosting_ecr_specs": {
"framework": "pytorch",
"framework_version": "1.12.0",
"py_version": "py38",
"huggingface_transformers_version": "4.17.0",
},
"hosting_artifact_key": "huggingface-infer/",
"hosting_script_key": "source-directory-tarballs/huggingface/inference/text2text/v1.0.3/sourcedir.tar.gz",
"hosting_prepacked_artifact_key": "huggingface-infer/prepack/v1.0.1/",
"hosting_prepacked_artifact_version": "1.0.1",
"inference_vulnerable": False,
"inference_dependencies": [
"accelerate==0.16.0",
"bitsandbytes==0.37.0",
"filelock==3.9.0",
"huggingface_hub==0.12.0",
"regex==2022.7.9",
"tokenizers==0.13.2",
"transformers==4.26.0",
],
"inference_vulnerabilities": [],
"training_vulnerable": False,
"training_dependencies": [],
"training_vulnerabilities": [],
"deprecated": False,
"inference_environment_variables": [
{
"name": "SAGEMAKER_PROGRAM",
"type": "text",
"default": "inference.py",
"scope": "container",
},
{
"name": "SAGEMAKER_SUBMIT_DIRECTORY",
"type": "text",
"default": "/opt/ml/model/code",
"scope": "container",
},
{
"name": "SAGEMAKER_CONTAINER_LOG_LEVEL",
"type": "text",
"default": "20",
"scope": "container",
},
{
"name": "MODEL_CACHE_ROOT",
"type": "text",
"default": "/opt/ml/model",
"scope": "container",
},
{"name": "SAGEMAKER_ENV", "type": "text", "default": "1", "scope": "container"},
{
"name": "SAGEMAKER_MODEL_SERVER_WORKERS",
"type": "text",
"default": "1",
"scope": "container",
},
{
"name": "SAGEMAKER_MODEL_SERVER_TIMEOUT",
"type": "text",
"default": "3600",
"scope": "container",
},
],
"metrics": [],
"default_inference_instance_type": "ml.g5.12xlarge",
"supported_inference_instance_types": [
"ml.g5.12xlarge",
"ml.g5.24xlarge",
"ml.p3.8xlarge",
"ml.p3.16xlarge",
"ml.g4dn.12xlarge",
],
"predictor_specs": {
"supported_content_types": ["application/x-text"],
"supported_accept_types": ["application/json;verbose", "application/json"],
"default_content_type": "application/x-text",
"default_accept_type": "application/json",
},
},
"no-supported-instance-types-model": {
"model_id": "pytorch-ic-mobilenet-v2",
"url": "https://pytorch.org/hub/pytorch_vision_mobilenet_v2/",
Expand Down
110 changes: 110 additions & 0 deletions tests/unit/sagemaker/jumpstart/model/test_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -678,6 +678,116 @@ def test_jumpstart_model_package_arn_unsupported_region(
"us-east-2. Please try one of the following regions: us-west-2, us-east-1."
)

@mock.patch("sagemaker.utils.sagemaker_timestamp")
@mock.patch("sagemaker.jumpstart.model.is_valid_model_id")
@mock.patch("sagemaker.jumpstart.factory.model.Session")
@mock.patch("sagemaker.jumpstart.accessors.JumpStartModelsAccessor.get_model_specs")
@mock.patch("sagemaker.jumpstart.model.Model.__init__")
@mock.patch("sagemaker.jumpstart.model.Model.deploy")
@mock.patch("sagemaker.jumpstart.factory.model.JUMPSTART_DEFAULT_REGION_NAME", region)
@mock.patch("sagemaker.jumpstart.factory.model.JUMPSTART_LOGGER.info")
def test_model_data_s3_prefix_override(
self,
mock_js_info_logger: mock.Mock,
mock_model_deploy: mock.Mock,
mock_model_init: mock.Mock,
mock_get_model_specs: mock.Mock,
mock_session: mock.Mock,
mock_is_valid_model_id: mock.Mock,
mock_sagemaker_timestamp: mock.Mock,
):
mock_model_deploy.return_value = default_predictor

mock_sagemaker_timestamp.return_value = "7777"

mock_is_valid_model_id.return_value = True
model_id, _ = "js-trainable-model", "*"

mock_get_model_specs.side_effect = get_special_model_spec

mock_session.return_value = sagemaker_session

JumpStartModel(model_id=model_id, model_data="s3://some-bucket/path/to/prefix/")

mock_model_init.assert_called_once_with(
image_uri="763104351884.dkr.ecr.us-west-2.amazonaws.com/"
"autogluon-inference:0.4.3-gpu-py38",
model_data={
"S3DataSource": {
"S3Uri": "s3://some-bucket/path/to/prefix/",
"S3DataType": "S3Prefix",
"CompressionType": "None",
}
},
source_dir="s3://jumpstart-cache-prod-us-west-2/source-directory-"
"tarballs/autogluon/inference/classification/v1.0.0/sourcedir.tar.gz",
entry_point="inference.py",
env={
"SAGEMAKER_PROGRAM": "inference.py",
"ENDPOINT_SERVER_TIMEOUT": "3600",
"MODEL_CACHE_ROOT": "/opt/ml/model",
"SAGEMAKER_ENV": "1",
"SAGEMAKER_MODEL_SERVER_WORKERS": "1",
},
predictor_cls=Predictor,
role=execution_role,
sagemaker_session=sagemaker_session,
enable_network_isolation=False,
name="blahblahblah-7777",
)

mock_js_info_logger.assert_called_with(
"S3 prefix model_data detected for JumpStartModel: '%s'. "
"Converting to S3DataSource dictionary: '%s'.",
"s3://some-bucket/path/to/prefix/",
'{"S3DataSource": {"S3Uri": "s3://some-bucket/path/to/prefix/", '
'"S3DataType": "S3Prefix", "CompressionType": "None"}}',
)

@mock.patch("sagemaker.jumpstart.model.is_valid_model_id")
@mock.patch("sagemaker.jumpstart.factory.model.Session")
@mock.patch("sagemaker.jumpstart.accessors.JumpStartModelsAccessor.get_model_specs")
@mock.patch("sagemaker.jumpstart.model.Model.__init__")
@mock.patch("sagemaker.jumpstart.model.Model.deploy")
@mock.patch("sagemaker.jumpstart.factory.model.JUMPSTART_DEFAULT_REGION_NAME", region)
@mock.patch("sagemaker.jumpstart.factory.model.JUMPSTART_LOGGER.info")
def test_model_data_s3_prefix_model(
self,
mock_js_info_logger: mock.Mock,
mock_model_deploy: mock.Mock,
mock_model_init: mock.Mock,
mock_get_model_specs: mock.Mock,
mock_session: mock.Mock,
mock_is_valid_model_id: mock.Mock,
):
mock_model_deploy.return_value = default_predictor

mock_is_valid_model_id.return_value = True
model_id, _ = "model_data_s3_prefix_model", "*"

mock_get_model_specs.side_effect = get_special_model_spec

mock_session.return_value = sagemaker_session

JumpStartModel(model_id=model_id, instance_type="ml.p2.xlarge")

mock_model_init.assert_called_once_with(
image_uri="763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-inference:1.12.0-gpu-py38",
model_data={
"S3DataSource": {
"S3Uri": "s3://jumpstart-cache-prod-us-west-2/huggingface-infer/prepack/v1.0.1/",
"S3DataType": "S3Prefix",
"CompressionType": "None",
}
},
predictor_cls=Predictor,
role=execution_role,
sagemaker_session=sagemaker_session,
enable_network_isolation=False,
)

mock_js_info_logger.assert_not_called()


def test_jumpstart_model_requires_model_id():
with pytest.raises(ValueError):
Expand Down