Skip to content

fix: enable model.register without 'inference' & 'transform' instances #3228

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jul 15, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 25 additions & 2 deletions src/sagemaker/session.py
Original file line number Diff line number Diff line change
Expand Up @@ -4499,9 +4499,32 @@ def get_create_model_package_request(
"Containers": containers,
"SupportedContentTypes": content_types,
"SupportedResponseMIMETypes": response_types,
"SupportedRealtimeInferenceInstanceTypes": inference_instances,
"SupportedTransformInstanceTypes": transform_instances,
}
if model_package_group_name is not None:
if inference_instances is not None:
inference_specification.update(
{
"SupportedRealtimeInferenceInstanceTypes": inference_instances,
}
)
if transform_instances is not None:
inference_specification.update(
{
"SupportedTransformInstanceTypes": transform_instances,
}
)
else:
if not all([inference_instances, transform_instances]):
raise ValueError(
"inference_instances and transform_instances "
"must be provided if model_package_group_name is not present."
)
inference_specification.update(
{
"SupportedRealtimeInferenceInstanceTypes": inference_instances,
"SupportedTransformInstanceTypes": transform_instances,
}
)
request_dict["InferenceSpecification"] = inference_specification
request_dict["CertifyForMarketplace"] = marketplace_cert
request_dict["ModelApprovalStatus"] = approval_status
Expand Down
9 changes: 2 additions & 7 deletions src/sagemaker/workflow/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -341,16 +341,11 @@ def __init__(
super(_RegisterModelStep, self).__init__(
name, StepTypeEnum.REGISTER_MODEL, display_name, description, depends_on, retry_policies
)
deprecated_args_missing = (
content_types is None
or response_types is None
or inference_instances is None
or transform_instances is None
)
deprecated_args_missing = content_types is None or response_types is None
if not (step_args is None) ^ deprecated_args_missing:
raise ValueError(
"step_args and the set of (content_types, response_types, "
"inference_instances, transform_instances) are mutually exclusive. "
") are mutually exclusive. "
"Either of them should be provided."
)

Expand Down
95 changes: 93 additions & 2 deletions tests/unit/sagemaker/workflow/test_pipeline_session.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,8 +224,6 @@ def test_pipeline_session_context_for_model_step_without_instance_types(
],
"SupportedContentTypes": ["text/csv"],
"SupportedResponseMIMETypes": ["text/csv"],
"SupportedRealtimeInferenceInstanceTypes": None,
"SupportedTransformInstanceTypes": None,
},
"CertifyForMarketplace": False,
"ModelApprovalStatus": "PendingManualApproval",
Expand All @@ -234,3 +232,96 @@ def test_pipeline_session_context_for_model_step_without_instance_types(
}

assert register_step_args.create_model_package_request == expected_output


def test_pipeline_session_context_for_model_step_with_one_instance_types(
pipeline_session_mock,
):
model = Model(
name="MyModel",
image_uri="fakeimage",
model_data=ParameterString(name="ModelData", default_value="s3://my-bucket/file"),
sagemaker_session=pipeline_session_mock,
entry_point=f"{DATA_DIR}/dummy_script.py",
source_dir=f"{DATA_DIR}",
role=_ROLE,
)
register_step_args = model.register(
content_types=["text/csv"],
response_types=["text/csv"],
inference_instances=["ml.t2.medium", "ml.m5.xlarge"],
model_package_group_name="MyModelPackageGroup",
task="IMAGE_CLASSIFICATION",
sample_payload_url="s3://test-bucket/model",
framework="TENSORFLOW",
framework_version="2.9",
nearest_model_name="resnet50",
data_input_configuration='{"input_1":[1,224,224,3]}',
)

expected_output = {
"ModelPackageGroupName": "MyModelPackageGroup",
"InferenceSpecification": {
"Containers": [
{
"Image": "fakeimage",
"Environment": {
"SAGEMAKER_PROGRAM": "dummy_script.py",
"SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code",
"SAGEMAKER_CONTAINER_LOG_LEVEL": "20",
"SAGEMAKER_REGION": "us-west-2",
},
"ModelDataUrl": ParameterString(
name="ModelData",
default_value="s3://my-bucket/file",
),
"Framework": "TENSORFLOW",
"FrameworkVersion": "2.9",
"NearestModelName": "resnet50",
"ModelInput": {
"DataInputConfig": '{"input_1":[1,224,224,3]}',
},
}
],
"SupportedContentTypes": ["text/csv"],
"SupportedResponseMIMETypes": ["text/csv"],
"SupportedRealtimeInferenceInstanceTypes": ["ml.t2.medium", "ml.m5.xlarge"],
},
"CertifyForMarketplace": False,
"ModelApprovalStatus": "PendingManualApproval",
"SamplePayloadUrl": "s3://test-bucket/model",
"Task": "IMAGE_CLASSIFICATION",
}

assert register_step_args.create_model_package_request == expected_output


def test_pipeline_session_context_for_model_step_without_model_package_group_name(
pipeline_session_mock,
):
model = Model(
name="MyModel",
image_uri="fakeimage",
model_data=ParameterString(name="ModelData", default_value="s3://my-bucket/file"),
sagemaker_session=pipeline_session_mock,
entry_point=f"{DATA_DIR}/dummy_script.py",
source_dir=f"{DATA_DIR}",
role=_ROLE,
)
with pytest.raises(ValueError) as error:
model.register(
content_types=["text/csv"],
response_types=["text/csv"],
inference_instances=["ml.t2.medium", "ml.m5.xlarge"],
model_package_name="MyModelPackageName",
task="IMAGE_CLASSIFICATION",
sample_payload_url="s3://test-bucket/model",
framework="TENSORFLOW",
framework_version="2.9",
nearest_model_name="resnet50",
data_input_configuration='{"input_1":[1,224,224,3]}',
)
assert (
"inference_inferences and transform_instances "
"must be provided if model_package_group_name is not present." == str(error)
)
92 changes: 86 additions & 6 deletions tests/unit/test_session.py
Original file line number Diff line number Diff line change
Expand Up @@ -2355,11 +2355,29 @@ def test_create_model_package_from_containers_incomplete_args(sagemaker_session)
containers=containers,
)
assert (
"content_types, response_types, inference_inferences and transform_instances "
"content_types and response_types "
"must be provided if containers is present." == str(error)
)


def test_create_model_package_from_containers_without_model_package_group_name(sagemaker_session):
model_package_name = "sagemaker-model-package"
containers = ["dummy-container"]
content_types = ["application/json"]
response_types = ["application/json"]
with pytest.raises(ValueError) as error:
sagemaker_session.create_model_package_from_containers(
model_package_name=model_package_name,
containers=containers,
content_types=content_types,
response_types=response_types,
)
assert (
"inference_inferences and transform_instances "
"must be provided if model_package_group_name is not present." == str(error)
)


def test_create_model_package_from_containers_all_args(sagemaker_session):
model_package_name = "sagemaker-model-package"
containers = ["dummy-container"]
Expand Down Expand Up @@ -2437,7 +2455,7 @@ def test_create_model_package_from_containers_all_args(sagemaker_session):


def test_create_model_package_from_containers_without_instance_types(sagemaker_session):
model_package_name = "sagemaker-model-package"
model_package_group_name = "sagemaker-model-package-group-name-1.0"
containers = ["dummy-container"]
content_types = ["application/json"]
response_types = ["application/json"]
Expand Down Expand Up @@ -2470,7 +2488,7 @@ def test_create_model_package_from_containers_without_instance_types(sagemaker_s
containers=containers,
content_types=content_types,
response_types=response_types,
model_package_name=model_package_name,
model_package_group_name=model_package_group_name,
model_metrics=model_metrics,
metadata_properties=metadata_properties,
marketplace_cert=marketplace_cert,
Expand All @@ -2480,13 +2498,75 @@ def test_create_model_package_from_containers_without_instance_types(sagemaker_s
customer_metadata_properties=customer_metadata_properties,
)
expected_args = {
"ModelPackageName": model_package_name,
"ModelPackageGroupName": model_package_group_name,
"InferenceSpecification": {
"Containers": containers,
"SupportedContentTypes": content_types,
"SupportedResponseMIMETypes": response_types,
"SupportedRealtimeInferenceInstanceTypes": None,
"SupportedTransformInstanceTypes": None,
},
"ModelPackageDescription": description,
"ModelMetrics": model_metrics,
"MetadataProperties": metadata_properties,
"CertifyForMarketplace": marketplace_cert,
"ModelApprovalStatus": approval_status,
"DriftCheckBaselines": drift_check_baselines,
"CustomerMetadataProperties": customer_metadata_properties,
}
sagemaker_session.sagemaker_client.create_model_package.assert_called_with(**expected_args)


def test_create_model_package_from_containers_with_one_instance_types(sagemaker_session):
model_package_group_name = "sagemaker-model-package-group-name-1.0"
containers = ["dummy-container"]
content_types = ["application/json"]
response_types = ["application/json"]
transform_instances = ["ml.m5.xlarge"]
model_metrics = {
"Bias": {
"ContentType": "content-type",
"S3Uri": "s3://...",
}
}
drift_check_baselines = {
"Bias": {
"ConfigFile": {
"ContentType": "content-type",
"S3Uri": "s3://...",
}
}
}

metadata_properties = {
"CommitId": "test-commit-id",
"Repository": "test-repository",
"GeneratedBy": "sagemaker-python-sdk",
"ProjectId": "unit-test",
}
marketplace_cert = (True,)
approval_status = ("Approved",)
description = "description"
customer_metadata_properties = {"key1": "value1"}
sagemaker_session.create_model_package_from_containers(
containers=containers,
content_types=content_types,
response_types=response_types,
transform_instances=transform_instances,
model_package_group_name=model_package_group_name,
model_metrics=model_metrics,
metadata_properties=metadata_properties,
marketplace_cert=marketplace_cert,
approval_status=approval_status,
description=description,
drift_check_baselines=drift_check_baselines,
customer_metadata_properties=customer_metadata_properties,
)
expected_args = {
"ModelPackageGroupName": model_package_group_name,
"InferenceSpecification": {
"Containers": containers,
"SupportedContentTypes": content_types,
"SupportedResponseMIMETypes": response_types,
"SupportedTransformInstanceTypes": transform_instances,
},
"ModelPackageDescription": description,
"ModelMetrics": model_metrics,
Expand Down