Skip to content

feature: include fields to work with inference recommender #3174

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 24 additions & 0 deletions src/sagemaker/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -1301,6 +1301,12 @@ def register(
drift_check_baselines=None,
customer_metadata_properties=None,
domain=None,
sample_payload_url=None,
task=None,
framework=None,
framework_version=None,
nearest_model_name=None,
data_input_configuration=None,
**kwargs,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.
Expand Down Expand Up @@ -1334,6 +1340,18 @@ def register(
metadata properties (default: None).
domain (str): Domain values can be "COMPUTER_VISION", "NATURAL_LANGUAGE_PROCESSING",
"MACHINE_LEARNING" (default: None).
sample_payload_url (str): The S3 path where the sample payload is stored
(default: None).
task (str): Task values which are supported by Inference Recommender are "FILL_MASK",
"IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION", "IMAGE_SEGMENTATION",
"CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
framework (str): Machine learning framework of the model package container image
(default: None).
framework_version (str): Framework version of the Model Package Container Image
(default: None).
nearest_model_name (str): Name of a pre-trained machine learning benchmarked by
Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str): Input object for the model (default: None).
**kwargs: Passed to invocation of ``create_model()``. Implementations may customize
``create_model()`` to accept ``**kwargs`` to customize model creation during
deploy. For more, see the implementation docs.
Expand Down Expand Up @@ -1371,6 +1389,12 @@ def register(
drift_check_baselines=drift_check_baselines,
customer_metadata_properties=customer_metadata_properties,
domain=domain,
sample_payload_url=sample_payload_url,
task=task,
framework=framework,
framework_version=framework_version,
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
)

@property
Expand Down
24 changes: 24 additions & 0 deletions src/sagemaker/huggingface/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -306,6 +306,12 @@ def register(
drift_check_baselines=None,
customer_metadata_properties=None,
domain=None,
sample_payload_url=None,
task=None,
framework=None,
framework_version=None,
nearest_model_name=None,
data_input_configuration=None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Expand Down Expand Up @@ -337,6 +343,18 @@ def register(
metadata properties (default: None).
domain (str): Domain values can be "COMPUTER_VISION", "NATURAL_LANGUAGE_PROCESSING",
"MACHINE_LEARNING" (default: None).
sample_payload_url (str): The S3 path where the sample payload is stored
(default: None).
task (str): Task values which are supported by Inference Recommender are "FILL_MASK",
"IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION", "IMAGE_SEGMENTATION",
"CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
framework (str): Machine learning framework of the model package container image
(default: None).
framework_version (str): Framework version of the Model Package Container Image
(default: None).
nearest_model_name (str): Name of a pre-trained machine learning benchmarked by
Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str): Input object for the model (default: None).

Returns:
A `sagemaker.model.ModelPackage` instance.
Expand Down Expand Up @@ -367,6 +385,12 @@ def register(
drift_check_baselines=drift_check_baselines,
customer_metadata_properties=customer_metadata_properties,
domain=domain,
sample_payload_url=sample_payload_url,
task=task,
framework=framework,
framework_version=framework_version,
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
)

def prepare_container_def(
Expand Down
39 changes: 37 additions & 2 deletions src/sagemaker/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,10 @@
from sagemaker.serverless import ServerlessInferenceConfig
from sagemaker.transformer import Transformer
from sagemaker.jumpstart.utils import add_jumpstart_tags, get_jumpstart_base_name_if_jumpstart_model
from sagemaker.utils import unique_name_from_base
from sagemaker.utils import (
unique_name_from_base,
update_container_with_inference_params,
)
from sagemaker.async_inference import AsyncInferenceConfig
from sagemaker.predictor_async import AsyncPredictor
from sagemaker.workflow import is_pipeline_variable
Expand Down Expand Up @@ -310,6 +313,12 @@ def register(
customer_metadata_properties=None,
validation_specification=None,
domain=None,
task=None,
sample_payload_url=None,
framework=None,
framework_version=None,
nearest_model_name=None,
data_input_configuration=None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Expand Down Expand Up @@ -339,6 +348,18 @@ def register(
metadata properties (default: None).
domain (str): Domain values can be "COMPUTER_VISION", "NATURAL_LANGUAGE_PROCESSING",
"MACHINE_LEARNING" (default: None).
sample_payload_url (str): The S3 path where the sample payload is stored
(default: None).
task (str): Task values which are supported by Inference Recommender are "FILL_MASK",
"IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION", "IMAGE_SEGMENTATION",
"CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
framework (str): Machine learning framework of the model package container image
(default: None).
framework_version (str): Framework version of the Model Package Container Image
(default: None).
nearest_model_name (str): Name of a pre-trained machine learning benchmarked by
Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str): Input object for the model (default: None).

Returns:
A `sagemaker.model.ModelPackage` instance or pipeline step arguments
Expand All @@ -349,10 +370,22 @@ def register(
raise ValueError("SageMaker Model Package cannot be created without model data.")
if image_uri is not None:
self.image_uri = image_uri

if model_package_group_name is not None:
container_def = self.prepare_container_def()
update_container_with_inference_params(
framework=framework,
framework_version=framework_version,
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
container_obj=container_def,
)
else:
container_def = {"Image": self.image_uri, "ModelDataUrl": self.model_data}
container_def = {
"Image": self.image_uri,
"ModelDataUrl": self.model_data,
}

model_pkg_args = sagemaker.get_model_package_args(
content_types,
response_types,
Expand All @@ -370,6 +403,8 @@ def register(
customer_metadata_properties=customer_metadata_properties,
validation_specification=validation_specification,
domain=domain,
sample_payload_url=sample_payload_url,
task=task,
)
model_package = self.sagemaker_session.create_model_package_from_containers(
**model_pkg_args
Expand Down
24 changes: 24 additions & 0 deletions src/sagemaker/mxnet/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,6 +159,12 @@ def register(
drift_check_baselines=None,
customer_metadata_properties=None,
domain=None,
sample_payload_url=None,
task=None,
framework=None,
framework_version=None,
nearest_model_name=None,
data_input_configuration=None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Expand Down Expand Up @@ -188,6 +194,18 @@ def register(
metadata properties (default: None).
domain (str): Domain values can be "COMPUTER_VISION", "NATURAL_LANGUAGE_PROCESSING",
"MACHINE_LEARNING" (default: None).
sample_payload_url (str): The S3 path where the sample payload is stored
(default: None).
task (str): Task values which are supported by Inference Recommender are "FILL_MASK",
"IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION", "IMAGE_SEGMENTATION",
"CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
framework (str): Machine learning framework of the model package container image
(default: None).
framework_version (str): Framework version of the Model Package Container Image
(default: None).
nearest_model_name (str): Name of a pre-trained machine learning benchmarked by
Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str): Input object for the model (default: None).

Returns:
A `sagemaker.model.ModelPackage` instance.
Expand Down Expand Up @@ -218,6 +236,12 @@ def register(
drift_check_baselines=drift_check_baselines,
customer_metadata_properties=customer_metadata_properties,
domain=domain,
sample_payload_url=sample_payload_url,
task=task,
framework=framework,
framework_version=framework_version,
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
)

def prepare_container_def(
Expand Down
32 changes: 31 additions & 1 deletion src/sagemaker/pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,10 @@
from sagemaker.drift_check_baselines import DriftCheckBaselines
from sagemaker.metadata_properties import MetadataProperties
from sagemaker.session import Session
from sagemaker.utils import name_from_image
from sagemaker.utils import (
name_from_image,
update_container_with_inference_params,
)
from sagemaker.transformer import Transformer
from sagemaker.workflow.pipeline_context import runnable_by_pipeline

Expand Down Expand Up @@ -279,6 +282,12 @@ def register(
drift_check_baselines: Optional[DriftCheckBaselines] = None,
customer_metadata_properties: Optional[Dict[str, str]] = None,
domain: Optional[str] = None,
sample_payload_url: Optional[str] = None,
task: Optional[str] = None,
framework: Optional[str] = None,
framework_version: Optional[str] = None,
nearest_model_name: Optional[str] = None,
data_input_configuration: Optional[str] = None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Expand Down Expand Up @@ -308,6 +317,18 @@ def register(
metadata properties (default: None).
domain (str): Domain values can be "COMPUTER_VISION", "NATURAL_LANGUAGE_PROCESSING",
"MACHINE_LEARNING" (default: None).
sample_payload_url (str): The S3 path where the sample payload is stored
(default: None).
task (str): Task values which are supported by Inference Recommender are "FILL_MASK",
"IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION", "IMAGE_SEGMENTATION",
"CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
framework (str): Machine learning framework of the model package container image
(default: None).
framework_version (str): Framework version of the Model Package Container Image
(default: None).
nearest_model_name (str): Name of a pre-trained machine learning benchmarked by
Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str): Input object for the model (default: None).

Returns:
A `sagemaker.model.ModelPackage` instance.
Expand All @@ -319,6 +340,13 @@ def register(
container_def = self.pipeline_container_def(
inference_instances[0] if inference_instances else None
)
update_container_with_inference_params(
framework=framework,
framework_version=framework_version,
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
container_list=container_def,
)
else:
container_def = [
{
Expand All @@ -344,6 +372,8 @@ def register(
drift_check_baselines=drift_check_baselines,
customer_metadata_properties=customer_metadata_properties,
domain=domain,
sample_payload_url=sample_payload_url,
task=task,
)

self.sagemaker_session.create_model_package_from_containers(**model_pkg_args)
Expand Down
24 changes: 24 additions & 0 deletions src/sagemaker/pytorch/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,6 +160,12 @@ def register(
drift_check_baselines=None,
customer_metadata_properties=None,
domain=None,
sample_payload_url=None,
task=None,
framework=None,
framework_version=None,
nearest_model_name=None,
data_input_configuration=None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Expand Down Expand Up @@ -189,6 +195,18 @@ def register(
metadata properties (default: None).
domain (str): Domain values can be "COMPUTER_VISION", "NATURAL_LANGUAGE_PROCESSING",
"MACHINE_LEARNING" (default: None).
sample_payload_url (str): The S3 path where the sample payload is stored
(default: None).
task (str): Task values which are supported by Inference Recommender are "FILL_MASK",
"IMAGE_CLASSIFICATION", "OBJECT_DETECTION", "TEXT_GENERATION", "IMAGE_SEGMENTATION",
"CLASSIFICATION", "REGRESSION", "OTHER" (default: None).
framework (str): Machine learning framework of the model package container image
(default: None).
framework_version (str): Framework version of the Model Package Container Image
(default: None).
nearest_model_name (str): Name of a pre-trained machine learning benchmarked by
Amazon SageMaker Inference Recommender (default: None).
data_input_configuration (str): Input object for the model (default: None).

Returns:
A `sagemaker.model.ModelPackage` instance.
Expand Down Expand Up @@ -219,6 +237,12 @@ def register(
drift_check_baselines=drift_check_baselines,
customer_metadata_properties=customer_metadata_properties,
domain=domain,
sample_payload_url=sample_payload_url,
task=task,
framework=framework,
framework_version=framework_version,
nearest_model_name=nearest_model_name,
data_input_configuration=data_input_configuration,
)

def prepare_container_def(
Expand Down
Loading