Skip to content

add parameterized tests to transformer #3155

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion tests/unit/sagemaker/workflow/helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,10 @@ def __init__(self, name, display_name=None, description=None, depends_on=None):
super(CustomStep, self).__init__(
name, display_name, description, StepTypeEnum.TRAINING, depends_on
)
self._properties = Properties(path=f"Steps.{name}")
# for testing property reference, we just use DescribeTrainingJobResponse shape here.
self._properties = Properties(
path=f"Steps.{name}", shape_name="DescribeTrainingJobResponse"
)

@property
def arguments(self):
Expand Down
70 changes: 57 additions & 13 deletions tests/unit/sagemaker/workflow/test_transform_step.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,10 +23,13 @@
from sagemaker.parameter import IntegerParameter
from sagemaker.tuner import HyperparameterTuner
from sagemaker.workflow.pipeline_context import PipelineSession
from tests.unit.sagemaker.workflow.helpers import CustomStep

from sagemaker.workflow.steps import TransformStep, TransformInput
from sagemaker.workflow.pipeline import Pipeline
from sagemaker.workflow.parameters import ParameterString
from sagemaker.workflow.functions import Join
from sagemaker.workflow import is_pipeline_variable

from sagemaker.transformer import Transformer

Expand All @@ -53,6 +56,7 @@ def client():
client_mock._client_config.user_agent = (
"Boto3/1.14.24 Python/3.8.5 Linux/5.4.0-42-generic Botocore/1.17.24 Resource"
)
client_mock.describe_model.return_value = {"PrimaryContainer": {}, "Containers": {}}
return client_mock


Expand Down Expand Up @@ -80,18 +84,44 @@ def pipeline_session(boto_session, client):
)


def test_transform_step_with_transformer(pipeline_session):
model_name = ParameterString("ModelName")
@pytest.mark.parametrize(
"model_name",
[
"my-model",
ParameterString("ModelName"),
ParameterString("ModelName", default_value="my-model"),
Join(on="-", values=["my", "model"]),
CustomStep(name="custom-step").properties.RoleArn,
],
)
@pytest.mark.parametrize(
"data",
[
"s3://my-bucket/my-data",
ParameterString("MyTransformInput"),
ParameterString("MyTransformInput", default_value="s3://my-model"),
Join(on="/", values=["s3://my-bucket", "my-transform-data", "input"]),
CustomStep(name="custom-step").properties.OutputDataConfig.S3OutputPath,
],
)
@pytest.mark.parametrize(
"output_path",
[
"s3://my-bucket/my-output-path",
ParameterString("MyOutputPath"),
ParameterString("MyOutputPath", default_value="s3://my-output"),
Join(on="/", values=["s3://my-bucket", "my-transform-data", "output"]),
CustomStep(name="custom-step").properties.OutputDataConfig.S3OutputPath,
],
)
def test_transform_step_with_transformer(model_name, data, output_path, pipeline_session):
transformer = Transformer(
model_name=model_name,
instance_type="ml.m5.xlarge",
instance_count=1,
output_path=f"s3://{pipeline_session.default_bucket()}/Transform",
output_path=output_path,
sagemaker_session=pipeline_session,
)
data = ParameterString(
name="Data", default_value=f"s3://{pipeline_session.default_bucket()}/batch-data"
)
transform_inputs = TransformInput(data=data)

with warnings.catch_warnings(record=True) as w:
Expand Down Expand Up @@ -123,13 +153,27 @@ def test_transform_step_with_transformer(pipeline_session):
parameters=[model_name, data],
sagemaker_session=pipeline_session,
)
step_args.args["ModelName"] = model_name.expr
step_args.args["TransformInput"]["DataSource"]["S3DataSource"]["S3Uri"] = data.expr
assert json.loads(pipeline.definition())["Steps"][0] == {
"Name": "MyTransformStep",
"Type": "Transform",
"Arguments": step_args.args,
}
step_args = step_args.args
step_def = json.loads(pipeline.definition())["Steps"][0]
step_args["ModelName"] = model_name.expr if is_pipeline_variable(model_name) else model_name
step_args["TransformInput"]["DataSource"]["S3DataSource"]["S3Uri"] = (
data.expr if is_pipeline_variable(data) else data
)
step_args["TransformOutput"]["S3OutputPath"] = (
output_path.expr if is_pipeline_variable(output_path) else output_path
)

del (
step_args["ModelName"],
step_args["TransformInput"]["DataSource"]["S3DataSource"]["S3Uri"],
step_args["TransformOutput"]["S3OutputPath"],
)
del (
step_def["Arguments"]["ModelName"],
step_def["Arguments"]["TransformInput"]["DataSource"]["S3DataSource"]["S3Uri"],
step_def["Arguments"]["TransformOutput"]["S3OutputPath"],
)
assert step_def == {"Name": "MyTransformStep", "Type": "Transform", "Arguments": step_args}


@pytest.mark.parametrize(
Expand Down