Skip to content

change: Add label_headers option for Clarify ModelExplainabilityMonitor #2707

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 14 commits into from
Jan 7, 2022
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions doc/frameworks/pytorch/using_pytorch.rst
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ with the following:

# ... load from args.train and args.test, train a model, write model to args.model_dir.

Because the SageMaker imports your training script, you should put your training code in a main guard
Because SageMaker imports your training script, you should put your training code in a main guard
(``if __name__=='__main__':``) if you are using the same script to host your model, so that SageMaker does not
inadvertently run your training code at the wrong point in execution.

Expand Down Expand Up @@ -177,7 +177,7 @@ fit Required Arguments
case, the S3 objects rooted at the ``my-training-data`` prefix will
be available in the default ``train`` channel. A dict from
string channel names to S3 URIs. In this case, the objects rooted at
each S3 prefix will available as files in each channel directory.
each S3 prefix will be available as files in each channel directory.

For example:

Expand Down Expand Up @@ -391,7 +391,7 @@ If you are using PyTorch Elastic Inference 1.5.1, you should provide ``model_fn`
The client-side Elastic Inference framework is CPU-only, even though inference still happens in a CUDA context on the server. Thus, the default ``model_fn`` for Elastic Inference loads the model to CPU. Tracing models may lead to tensor creation on a specific device, which may cause device-related errors when loading a model onto a different device. Providing an explicit ``map_location=torch.device('cpu')`` argument forces all tensors to CPU.

For more information on the default inference handler functions, please refer to:
`SageMaker PyTorch Default Inference Handler <https://github.com/aws/sagemaker-pytorch-serving-container/blob/master/src/sagemaker_pytorch_serving_container/default_inference_handler.py>`_.
`SageMaker PyTorch Default Inference Handler <https://github.com/aws/sagemaker-pytorch-inference-toolkit/blob/master/src/sagemaker_pytorch_serving_container/default_pytorch_inference_handler.py>`_.

Serve a PyTorch Model
---------------------
Expand Down
14 changes: 9 additions & 5 deletions src/sagemaker/clarify.py
Original file line number Diff line number Diff line change
Expand Up @@ -290,11 +290,15 @@ def __init__(
probability_threshold (float): An optional value for binary prediction tasks in which
the model returns a probability, to indicate the threshold to convert the
prediction to a boolean value. Default is 0.5.
label_headers (list): List of label values - one for each score of the ``probability``.
label_headers (list[str]): List of headers, each for a predicted score in model output.
For bias analysis, it is used to extract the label value with the highest score as
predicted label. For explainability job, It is used to beautify the analysis report
by replacing placeholders like "label0".
"""
self.label = label
self.probability = probability
self.probability_threshold = probability_threshold
self.label_headers = label_headers
if probability_threshold is not None:
try:
float(probability_threshold)
Expand Down Expand Up @@ -1060,10 +1064,10 @@ def run_explainability(
explainability_config (:class:`~sagemaker.clarify.ExplainabilityConfig` or list):
Config of the specific explainability method or a list of ExplainabilityConfig
objects. Currently, SHAP and PDP are the two methods supported.
model_scores(str|int|ModelPredictedLabelConfig): Index or JSONPath location in the
model output for the predicted scores to be explained. This is not required if the
model output is a single score. Alternatively, an instance of
ModelPredictedLabelConfig can be provided.
model_scores (int or str or :class:`~sagemaker.clarify.ModelPredictedLabelConfig`):
Index or JSONPath to locate the predicted scores in the model output. This is not
required if the model output is a single score. Alternatively, it can be an instance
of ModelPredictedLabelConfig to provide more parameters like label_headers.
wait (bool): Whether the call should wait until the job completes (default: True).
logs (bool): Whether to show the logs produced by the job.
Only meaningful when ``wait`` is True (default: True).
Expand Down
236 changes: 152 additions & 84 deletions src/sagemaker/dataset_definition/inputs.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,94 +26,147 @@ class RedshiftDatasetDefinition(ApiObject):
"""DatasetDefinition for Redshift.

With this input, SQL queries will be executed using Redshift to generate datasets to S3.

Parameters:
cluster_id (str): The Redshift cluster Identifier.
database (str): The name of the Redshift database used in Redshift query execution.
db_user (str): The database user name used in Redshift query execution.
query_string (str): The SQL query statements to be executed.
cluster_role_arn (str): The IAM role attached to your Redshift cluster that
Amazon SageMaker uses to generate datasets.
output_s3_uri (str): The location in Amazon S3 where the Redshift query
results are stored.
kms_key_id (str): The AWS Key Management Service (AWS KMS) key that Amazon
SageMaker uses to encrypt data from a Redshift execution.
output_format (str): The data storage format for Redshift query results.
Valid options are "PARQUET", "CSV"
output_compression (str): The compression used for Redshift query results.
Valid options are "None", "GZIP", "SNAPPY", "ZSTD", "BZIP2"
"""

cluster_id = None
database = None
db_user = None
query_string = None
cluster_role_arn = None
output_s3_uri = None
kms_key_id = None
output_format = None
output_compression = None
def __init__(
self,
cluster_id=None,
database=None,
db_user=None,
query_string=None,
cluster_role_arn=None,
output_s3_uri=None,
kms_key_id=None,
output_format=None,
output_compression=None,
):
"""Initialize RedshiftDatasetDefinition.

Args:
cluster_id (str, default=None): The Redshift cluster Identifier.
database (str, default=None):
The name of the Redshift database used in Redshift query execution.
db_user (str, default=None): The database user name used in Redshift query execution.
query_string (str, default=None): The SQL query statements to be executed.
cluster_role_arn (str, default=None): The IAM role attached to your Redshift cluster
that Amazon SageMaker uses to generate datasets.
output_s3_uri (str, default=None): The location in Amazon S3 where the Redshift query
results are stored.
kms_key_id (str, default=None): The AWS Key Management Service (AWS KMS) key that Amazon
SageMaker uses to encrypt data from a Redshift execution.
output_format (str, default=None): The data storage format for Redshift query results.
Valid options are "PARQUET", "CSV"
output_compression (str, default=None): The compression used for Redshift query results.
Valid options are "None", "GZIP", "SNAPPY", "ZSTD", "BZIP2"
"""
super(RedshiftDatasetDefinition, self).__init__(
cluster_id=cluster_id,
database=database,
db_user=db_user,
query_string=query_string,
cluster_role_arn=cluster_role_arn,
output_s3_uri=output_s3_uri,
kms_key_id=kms_key_id,
output_format=output_format,
output_compression=output_compression,
)


class AthenaDatasetDefinition(ApiObject):
"""DatasetDefinition for Athena.

With this input, SQL queries will be executed using Athena to generate datasets to S3.

Parameters:
catalog (str): The name of the data catalog used in Athena query execution.
database (str): The name of the database used in the Athena query execution.
query_string (str): The SQL query statements, to be executed.
output_s3_uri (str): The location in Amazon S3 where Athena query results are stored.
work_group (str): The name of the workgroup in which the Athena query is being started.
kms_key_id (str): The AWS Key Management Service (AWS KMS) key that Amazon
SageMaker uses to encrypt data generated from an Athena query execution.
output_format (str): The data storage format for Athena query results.
Valid options are "PARQUET", "ORC", "AVRO", "JSON", "TEXTFILE"
output_compression (str): The compression used for Athena query results.
Valid options are "GZIP", "SNAPPY", "ZLIB"
"""

catalog = None
database = None
query_string = None
output_s3_uri = None
work_group = None
kms_key_id = None
output_format = None
output_compression = None
def __init__(
self,
catalog=None,
database=None,
query_string=None,
output_s3_uri=None,
work_group=None,
kms_key_id=None,
output_format=None,
output_compression=None,
):
"""Initialize AthenaDatasetDefinition.

Args:
catalog (str, default=None): The name of the data catalog used in Athena query
execution.
database (str, default=None): The name of the database used in the Athena query
execution.
query_string (str, default=None): The SQL query statements, to be executed.
output_s3_uri (str, default=None):
The location in Amazon S3 where Athena query results are stored.
work_group (str, default=None):
The name of the workgroup in which the Athena query is being started.
kms_key_id (str, default=None): The AWS Key Management Service (AWS KMS) key that Amazon
SageMaker uses to encrypt data generated from an Athena query execution.
output_format (str, default=None): The data storage format for Athena query results.
Valid options are "PARQUET", "ORC", "AVRO", "JSON", "TEXTFILE"
output_compression (str, default=None): The compression used for Athena query results.
Valid options are "GZIP", "SNAPPY", "ZLIB"
"""
super(AthenaDatasetDefinition, self).__init__(
catalog=catalog,
database=database,
query_string=query_string,
output_s3_uri=output_s3_uri,
work_group=work_group,
kms_key_id=kms_key_id,
output_format=output_format,
output_compression=output_compression,
)


class DatasetDefinition(ApiObject):
"""DatasetDefinition input.

Parameters:
data_distribution_type (str): Whether the generated dataset is FullyReplicated or
ShardedByS3Key (default).
input_mode (str): Whether to use File or Pipe input mode. In File (default) mode, Amazon
SageMaker copies the data from the input source onto the local Amazon Elastic Block
Store (Amazon EBS) volumes before starting your training algorithm. This is the most
commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the
source directly to your algorithm without using the EBS volume.
local_path (str): The local path where you want Amazon SageMaker to download the Dataset
Definition inputs to run a processing job. LocalPath is an absolute path to the input
data. This is a required parameter when `AppManaged` is False (default).
redshift_dataset_definition (:class:`~sagemaker.dataset_definition.inputs.RedshiftDatasetDefinition`):
Configuration for Redshift Dataset Definition input.
athena_dataset_definition (:class:`~sagemaker.dataset_definition.inputs.AthenaDatasetDefinition`):
Configuration for Athena Dataset Definition input.
"""
"""DatasetDefinition input."""

_custom_boto_types = {
"redshift_dataset_definition": (RedshiftDatasetDefinition, True),
"athena_dataset_definition": (AthenaDatasetDefinition, True),
}

data_distribution_type = "ShardedByS3Key"
input_mode = "File"
local_path = None
redshift_dataset_definition = None
athena_dataset_definition = None
def __init__(
self,
data_distribution_type="ShardedByS3Key",
input_mode="File",
local_path=None,
redshift_dataset_definition=None,
athena_dataset_definition=None,
):
"""Initialize DatasetDefinition.

Parameters:
data_distribution_type (str, default="ShardedByS3Key"):
Whether the generated dataset is FullyReplicated or ShardedByS3Key (default).
input_mode (str, default="File"):
Whether to use File or Pipe input mode. In File (default) mode, Amazon
SageMaker copies the data from the input source onto the local Amazon Elastic Block
Store (Amazon EBS) volumes before starting your training algorithm. This is the most
commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the
source directly to your algorithm without using the EBS volume.
local_path (str, default=None):
The local path where you want Amazon SageMaker to download the Dataset
Definition inputs to run a processing job. LocalPath is an absolute path to the
input data. This is a required parameter when `AppManaged` is False (default).
redshift_dataset_definition
(:class:`~sagemaker.dataset_definition.inputs.RedshiftDatasetDefinition`,
default=None):
Configuration for Redshift Dataset Definition input.
athena_dataset_definition
(:class:`~sagemaker.dataset_definition.inputs.AthenaDatasetDefinition`,
default=None):
Configuration for Athena Dataset Definition input.
"""
super(DatasetDefinition, self).__init__(
data_distribution_type=data_distribution_type,
input_mode=input_mode,
local_path=local_path,
redshift_dataset_definition=redshift_dataset_definition,
athena_dataset_definition=athena_dataset_definition,
)


class S3Input(ApiObject):
Expand All @@ -124,20 +177,35 @@ class S3Input(ApiObject):
Note: Strong consistency is not guaranteed if S3Prefix is provided here.
S3 list operations are not strongly consistent.
Use ManifestFile if strong consistency is required.

Parameters:
s3_uri (str): the path to a specific S3 object or a S3 prefix
local_path (str): the path to a local directory. If not provided, skips data download
by SageMaker platform.
s3_data_type (str): Valid options are "ManifestFile" or "S3Prefix".
s3_input_mode (str): Valid options are "Pipe" or "File".
s3_data_distribution_type (str): Valid options are "FullyReplicated" or "ShardedByS3Key".
s3_compression_type (str): Valid options are "None" or "Gzip".
"""

s3_uri = None
local_path = None
s3_data_type = "S3Prefix"
s3_input_mode = "File"
s3_data_distribution_type = "FullyReplicated"
s3_compression_type = None
def __init__(
self,
s3_uri=None,
local_path=None,
s3_data_type="S3Prefix",
s3_input_mode="File",
s3_data_distribution_type="FullyReplicated",
s3_compression_type=None,
):
"""Initialize S3Input.

Parameters:
s3_uri (str, default=None): the path to a specific S3 object or a S3 prefix
local_path (str, default=None):
the path to a local directory. If not provided, skips data download
by SageMaker platform.
s3_data_type (str, default="S3Prefix"): Valid options are "ManifestFile" or "S3Prefix".
s3_input_mode (str, default="File"): Valid options are "Pipe" or "File".
s3_data_distribution_type (str, default="FullyReplicated"):
Valid options are "FullyReplicated" or "ShardedByS3Key".
s3_compression_type (str, default=None): Valid options are "None" or "Gzip".
"""
super(S3Input, self).__init__(
s3_uri=s3_uri,
local_path=local_path,
s3_data_type=s3_data_type,
s3_input_mode=s3_input_mode,
s3_data_distribution_type=s3_data_distribution_type,
s3_compression_type=s3_compression_type,
)
23 changes: 14 additions & 9 deletions src/sagemaker/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,21 +178,26 @@ def register(
"""
if self.model_data is None:
raise ValueError("SageMaker Model Package cannot be created without model data.")
if image_uri is not None:
self.image_uri = image_uri
if model_package_group_name is not None:
container_def = self.prepare_container_def()
else:
container_def = {"Image": self.image_uri, "ModelDataUrl": self.model_data}

model_pkg_args = sagemaker.get_model_package_args(
content_types,
response_types,
inference_instances,
transform_instances,
model_package_name,
model_package_group_name,
self.model_data,
image_uri or self.image_uri,
model_metrics,
metadata_properties,
marketplace_cert,
approval_status,
description,
model_package_name=model_package_name,
model_package_group_name=model_package_group_name,
model_metrics=model_metrics,
metadata_properties=metadata_properties,
marketplace_cert=marketplace_cert,
approval_status=approval_status,
description=description,
container_def_list=[container_def],
drift_check_baselines=drift_check_baselines,
)
model_package = self.sagemaker_session.create_model_package_from_containers(
Expand Down
Loading