Skip to content

feature: all predictors support serializer/deserializer overrides #1997

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Dec 3, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 15 additions & 4 deletions src/sagemaker/amazon/factorization_machines.py
Original file line number Diff line number Diff line change
Expand Up @@ -277,13 +277,20 @@ class FactorizationMachinesPredictor(Predictor):
to fit the model this Predictor performs inference on.

:meth:`predict()` returns a list of
:class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
:class:`~sagemaker.amazon.record_pb2.Record` objects (assuming the default
recordio-protobuf ``deserializer`` is used), one for each row in
the input ``ndarray``. The prediction is stored in the ``"score"`` key of
the ``Record.label`` field. Please refer to the formats details described:
https://docs.aws.amazon.com/sagemaker/latest/dg/fm-in-formats.html
"""

def __init__(self, endpoint_name, sagemaker_session=None):
def __init__(
self,
endpoint_name,
sagemaker_session=None,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
Expand All @@ -292,12 +299,16 @@ def __init__(self, endpoint_name, sagemaker_session=None):
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
serializer (sagemaker.serializers.BaseSerializer): Optional. Default
serializes input data to x-recordio-protobuf format.
deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
Default parses responses from x-recordio-protobuf format.
"""
super(FactorizationMachinesPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
serializer=serializer,
deserializer=deserializer,
)


Expand Down
16 changes: 13 additions & 3 deletions src/sagemaker/amazon/ipinsights.py
Original file line number Diff line number Diff line change
Expand Up @@ -191,7 +191,13 @@ class IPInsightsPredictor(Predictor):
second column should contain the IPv4 address in dot notation.
"""

def __init__(self, endpoint_name, sagemaker_session=None):
def __init__(
self,
endpoint_name,
sagemaker_session=None,
serializer=CSVSerializer(),
deserializer=JSONDeserializer(),
):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
Expand All @@ -200,12 +206,16 @@ def __init__(self, endpoint_name, sagemaker_session=None):
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
serializer (sagemaker.serializers.BaseSerializer): Optional. Default
serializes input data to text/csv.
deserializer (callable): Optional. Default parses JSON responses
using ``json.load(...)``.
"""
super(IPInsightsPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=CSVSerializer(),
deserializer=JSONDeserializer(),
serializer=serializer,
deserializer=deserializer,
)


Expand Down
19 changes: 15 additions & 4 deletions src/sagemaker/amazon/kmeans.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,12 +210,19 @@ class KMeansPredictor(Predictor):
to fit the model this Predictor performs inference on.

``predict()`` returns a list of
:class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
:class:`~sagemaker.amazon.record_pb2.Record` objects (assuming the default
recordio-protobuf ``deserializer`` is used), one for each row in
the input ``ndarray``. The nearest cluster is stored in the
``closest_cluster`` key of the ``Record.label`` field.
"""

def __init__(self, endpoint_name, sagemaker_session=None):
def __init__(
self,
endpoint_name,
sagemaker_session=None,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
Expand All @@ -224,12 +231,16 @@ def __init__(self, endpoint_name, sagemaker_session=None):
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
serializer (sagemaker.serializers.BaseSerializer): Optional. Default
serializes input data to x-recordio-protobuf format.
deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
Default parses responses from x-recordio-protobuf format.
"""
super(KMeansPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
serializer=serializer,
deserializer=deserializer,
)


Expand Down
19 changes: 15 additions & 4 deletions src/sagemaker/amazon/knn.py
Original file line number Diff line number Diff line change
Expand Up @@ -199,12 +199,19 @@ class KNNPredictor(Predictor):
to fit the model this Predictor performs inference on.

:func:`predict` returns a list of
:class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
:class:`~sagemaker.amazon.record_pb2.Record` objects (assuming the default
recordio-protobuf ``deserializer`` is used), one for each row in
the input ``ndarray``. The prediction is stored in the ``"predicted_label"``
key of the ``Record.label`` field.
"""

def __init__(self, endpoint_name, sagemaker_session=None):
def __init__(
self,
endpoint_name,
sagemaker_session=None,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
Expand All @@ -213,12 +220,16 @@ def __init__(self, endpoint_name, sagemaker_session=None):
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
serializer (sagemaker.serializers.BaseSerializer): Optional. Default
serializes input data to x-recordio-protobuf format.
deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
Default parses responses from x-recordio-protobuf format.
"""
super(KNNPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
serializer=serializer,
deserializer=deserializer,
)


Expand Down
19 changes: 15 additions & 4 deletions src/sagemaker/amazon/lda.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,12 +183,19 @@ class LDAPredictor(Predictor):
to fit the model this Predictor performs inference on.

:meth:`predict()` returns a list of
:class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
:class:`~sagemaker.amazon.record_pb2.Record` objects (assuming the default
recordio-protobuf ``deserializer`` is used), one for each row in
the input ``ndarray``. The lower dimension vector result is stored in the
``projection`` key of the ``Record.label`` field.
"""

def __init__(self, endpoint_name, sagemaker_session=None):
def __init__(
self,
endpoint_name,
sagemaker_session=None,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
Expand All @@ -197,12 +204,16 @@ def __init__(self, endpoint_name, sagemaker_session=None):
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
serializer (sagemaker.serializers.BaseSerializer): Optional. Default
serializes input data to x-recordio-protobuf format.
deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
Default parses responses from x-recordio-protobuf format.
"""
super(LDAPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
serializer=serializer,
deserializer=deserializer,
)


Expand Down
19 changes: 15 additions & 4 deletions src/sagemaker/amazon/linear_learner.py
Original file line number Diff line number Diff line change
Expand Up @@ -444,12 +444,19 @@ class LinearLearnerPredictor(Predictor):
to fit the model this Predictor performs inference on.

:func:`predict` returns a list of
:class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
:class:`~sagemaker.amazon.record_pb2.Record` objects (assuming the default
recordio-protobuf ``deserializer`` is used), one for each row in
the input ``ndarray``. The prediction is stored in the ``"predicted_label"``
key of the ``Record.label`` field.
"""

def __init__(self, endpoint_name, sagemaker_session=None):
def __init__(
self,
endpoint_name,
sagemaker_session=None,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
Expand All @@ -458,12 +465,16 @@ def __init__(self, endpoint_name, sagemaker_session=None):
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
serializer (sagemaker.serializers.BaseSerializer): Optional. Default
serializes input data to x-recordio-protobuf format.
deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
Default parses responses from x-recordio-protobuf format.
"""
super(LinearLearnerPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
serializer=serializer,
deserializer=deserializer,
)


Expand Down
19 changes: 15 additions & 4 deletions src/sagemaker/amazon/ntm.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,12 +212,19 @@ class NTMPredictor(Predictor):
to fit the model this Predictor performs inference on.

:meth:`predict()` returns a list of
:class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
:class:`~sagemaker.amazon.record_pb2.Record` objects (assuming the default
recordio-protobuf ``deserializer`` is used), one for each row in
the input ``ndarray``. The lower dimension vector result is stored in the
``projection`` key of the ``Record.label`` field.
"""

def __init__(self, endpoint_name, sagemaker_session=None):
def __init__(
self,
endpoint_name,
sagemaker_session=None,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
Expand All @@ -226,12 +233,16 @@ def __init__(self, endpoint_name, sagemaker_session=None):
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
serializer (sagemaker.serializers.BaseSerializer): Optional. Default
serializes input data to x-recordio-protobuf format.
deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
Default parses responses from x-recordio-protobuf format.
"""
super(NTMPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
serializer=serializer,
deserializer=deserializer,
)


Expand Down
19 changes: 15 additions & 4 deletions src/sagemaker/amazon/pca.py
Original file line number Diff line number Diff line change
Expand Up @@ -193,12 +193,19 @@ class PCAPredictor(Predictor):
to fit the model this Predictor performs inference on.

:meth:`predict()` returns a list of
:class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
:class:`~sagemaker.amazon.record_pb2.Record` objects (assuming the default
recordio-protobuf ``deserializer`` is used), one for each row in
the input ``ndarray``. The lower dimension vector result is stored in the
``projection`` key of the ``Record.label`` field.
"""

def __init__(self, endpoint_name, sagemaker_session=None):
def __init__(
self,
endpoint_name,
sagemaker_session=None,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
Expand All @@ -207,12 +214,16 @@ def __init__(self, endpoint_name, sagemaker_session=None):
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
serializer (sagemaker.serializers.BaseSerializer): Optional. Default
serializes input data to x-recordio-protobuf format.
deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
Default parses responses from x-recordio-protobuf format.
"""
super(PCAPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
serializer=serializer,
deserializer=deserializer,
)


Expand Down
19 changes: 15 additions & 4 deletions src/sagemaker/amazon/randomcutforest.py
Original file line number Diff line number Diff line change
Expand Up @@ -171,12 +171,19 @@ class RandomCutForestPredictor(Predictor):
to fit the model this Predictor performs inference on.

:meth:`predict()` returns a list of
:class:`~sagemaker.amazon.record_pb2.Record` objects, one for each row in
:class:`~sagemaker.amazon.record_pb2.Record` objects (assuming the default
recordio-protobuf ``deserializer`` is used), one for each row in
the input. Each row's score is stored in the key ``score`` of the
``Record.label`` field.
"""

def __init__(self, endpoint_name, sagemaker_session=None):
def __init__(
self,
endpoint_name,
sagemaker_session=None,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
):
"""
Args:
endpoint_name (str): Name of the Amazon SageMaker endpoint to which
Expand All @@ -185,12 +192,16 @@ def __init__(self, endpoint_name, sagemaker_session=None):
object, used for SageMaker interactions (default: None). If not
specified, one is created using the default AWS configuration
chain.
serializer (sagemaker.serializers.BaseSerializer): Optional. Default
serializes input data to x-recordio-protobuf format.
deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
Default parses responses from x-recordio-protobuf format.
"""
super(RandomCutForestPredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=RecordSerializer(),
deserializer=RecordDeserializer(),
serializer=serializer,
deserializer=deserializer,
)


Expand Down
18 changes: 16 additions & 2 deletions src/sagemaker/chainer/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,13 @@ class ChainerPredictor(Predictor):
multidimensional tensors for Chainer inference.
"""

def __init__(self, endpoint_name, sagemaker_session=None):
def __init__(
self,
endpoint_name,
sagemaker_session=None,
serializer=NumpySerializer(),
deserializer=NumpyDeserializer(),
):
"""Initialize an ``ChainerPredictor``.

Args:
Expand All @@ -48,9 +54,17 @@ def __init__(self, endpoint_name, sagemaker_session=None):
manages interactions with Amazon SageMaker APIs and any other
AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.
serializer (sagemaker.serializers.BaseSerializer): Optional. Default
serializes input data to .npy format. Handles lists and numpy
arrays.
deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
Default parses the response from .npy format to numpy array.
"""
super(ChainerPredictor, self).__init__(
endpoint_name, sagemaker_session, NumpySerializer(), NumpyDeserializer()
endpoint_name,
sagemaker_session,
serializer=serializer,
deserializer=deserializer,
)


Expand Down
Loading