Skip to content

infra: move Model.deploy unit tests to separate file #1425

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 16, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
269 changes: 269 additions & 0 deletions tests/unit/sagemaker/model/test_deploy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,269 @@
# Copyright 2017-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
from __future__ import absolute_import

import copy

import pytest
from mock import Mock, patch

import sagemaker
from sagemaker.model import Model

MODEL_DATA = "s3://bucket/model.tar.gz"
MODEL_IMAGE = "mi"
TIMESTAMP = "2017-10-10-14-14-15"
MODEL_NAME = "{}-{}".format(MODEL_IMAGE, TIMESTAMP)

INSTANCE_COUNT = 2
INSTANCE_TYPE = "ml.c4.4xlarge"
ROLE = "some-role"

BASE_PRODUCTION_VARIANT = {
"ModelName": MODEL_NAME,
"InstanceType": INSTANCE_TYPE,
"InitialInstanceCount": INSTANCE_COUNT,
"VariantName": "AllTraffic",
"InitialVariantWeight": 1,
}


@pytest.fixture
def sagemaker_session():
return Mock()


@patch("sagemaker.production_variant")
@patch("sagemaker.model.Model.prepare_container_def")
@patch("sagemaker.utils.name_from_image")
def test_deploy(name_from_image, prepare_container_def, production_variant, sagemaker_session):
name_from_image.return_value = MODEL_NAME
production_variant.return_value = BASE_PRODUCTION_VARIANT

container_def = {"Image": MODEL_IMAGE, "Environment": {}, "ModelDataUrl": MODEL_DATA}
prepare_container_def.return_value = container_def

model = Model(MODEL_DATA, MODEL_IMAGE, role=ROLE, sagemaker_session=sagemaker_session)
model.deploy(instance_type=INSTANCE_TYPE, initial_instance_count=INSTANCE_COUNT)

name_from_image.assert_called_with(MODEL_IMAGE)
prepare_container_def.assert_called_with(INSTANCE_TYPE, accelerator_type=None)
production_variant.assert_called_with(
MODEL_NAME, INSTANCE_TYPE, INSTANCE_COUNT, accelerator_type=None
)

sagemaker_session.create_model.assert_called_with(
MODEL_NAME, ROLE, container_def, vpc_config=None, enable_network_isolation=False, tags=None
)

sagemaker_session.endpoint_from_production_variants.assert_called_with(
name=MODEL_NAME,
production_variants=[BASE_PRODUCTION_VARIANT],
tags=None,
kms_key=None,
wait=True,
data_capture_config_dict=None,
)


@patch("sagemaker.model.Model._create_sagemaker_model")
@patch("sagemaker.production_variant")
def test_deploy_accelerator_type(production_variant, create_sagemaker_model, sagemaker_session):
model = Model(
MODEL_DATA, MODEL_IMAGE, role=ROLE, name=MODEL_NAME, sagemaker_session=sagemaker_session
)

accelerator_type = "ml.eia.medium"

production_variant_result = copy.deepcopy(BASE_PRODUCTION_VARIANT)
production_variant_result["AcceleratorType"] = accelerator_type
production_variant.return_value = production_variant_result

model.deploy(
instance_type=INSTANCE_TYPE,
initial_instance_count=INSTANCE_COUNT,
accelerator_type=accelerator_type,
)

create_sagemaker_model.assert_called_with(INSTANCE_TYPE, accelerator_type, None)
production_variant.assert_called_with(
MODEL_NAME, INSTANCE_TYPE, INSTANCE_COUNT, accelerator_type=accelerator_type
)

sagemaker_session.endpoint_from_production_variants.assert_called_with(
name=MODEL_NAME,
production_variants=[production_variant_result],
tags=None,
kms_key=None,
wait=True,
data_capture_config_dict=None,
)


@patch("sagemaker.utils.name_from_image", Mock())
@patch("sagemaker.model.Model._create_sagemaker_model", Mock())
@patch("sagemaker.production_variant", return_value=BASE_PRODUCTION_VARIANT)
def test_deploy_endpoint_name(sagemaker_session):
model = Model(MODEL_DATA, MODEL_IMAGE, role=ROLE, sagemaker_session=sagemaker_session)

endpoint_name = "blah"
model.deploy(
endpoint_name=endpoint_name,
instance_type=INSTANCE_TYPE,
initial_instance_count=INSTANCE_COUNT,
)

sagemaker_session.endpoint_from_production_variants.assert_called_with(
name=endpoint_name,
production_variants=[BASE_PRODUCTION_VARIANT],
tags=None,
kms_key=None,
wait=True,
data_capture_config_dict=None,
)


@patch("sagemaker.production_variant", return_value=BASE_PRODUCTION_VARIANT)
@patch("sagemaker.model.Model._create_sagemaker_model")
def test_deploy_tags(create_sagemaker_model, production_variant, sagemaker_session):
model = Model(
MODEL_DATA, MODEL_IMAGE, role=ROLE, name=MODEL_NAME, sagemaker_session=sagemaker_session
)

tags = [{"Key": "ModelName", "Value": "TestModel"}]
model.deploy(instance_type=INSTANCE_TYPE, initial_instance_count=INSTANCE_COUNT, tags=tags)

create_sagemaker_model.assert_called_with(INSTANCE_TYPE, None, tags)
sagemaker_session.endpoint_from_production_variants.assert_called_with(
name=MODEL_NAME,
production_variants=[BASE_PRODUCTION_VARIANT],
tags=tags,
kms_key=None,
wait=True,
data_capture_config_dict=None,
)


@patch("sagemaker.model.Model._create_sagemaker_model", Mock())
@patch("sagemaker.production_variant", return_value=BASE_PRODUCTION_VARIANT)
def test_deploy_kms_key(production_variant, sagemaker_session):
model = Model(
MODEL_DATA, MODEL_IMAGE, role=ROLE, name=MODEL_NAME, sagemaker_session=sagemaker_session
)

key = "some-key-arn"
model.deploy(instance_type=INSTANCE_TYPE, initial_instance_count=INSTANCE_COUNT, kms_key=key)

sagemaker_session.endpoint_from_production_variants.assert_called_with(
name=MODEL_NAME,
production_variants=[BASE_PRODUCTION_VARIANT],
tags=None,
kms_key=key,
wait=True,
data_capture_config_dict=None,
)


@patch("sagemaker.model.Model._create_sagemaker_model", Mock())
@patch("sagemaker.production_variant", return_value=BASE_PRODUCTION_VARIANT)
def test_deploy_async(production_variant, sagemaker_session):
model = Model(
MODEL_DATA, MODEL_IMAGE, role=ROLE, name=MODEL_NAME, sagemaker_session=sagemaker_session
)

model.deploy(instance_type=INSTANCE_TYPE, initial_instance_count=INSTANCE_COUNT, wait=False)

sagemaker_session.endpoint_from_production_variants.assert_called_with(
name=MODEL_NAME,
production_variants=[BASE_PRODUCTION_VARIANT],
tags=None,
kms_key=None,
wait=False,
data_capture_config_dict=None,
)


@patch("sagemaker.model.Model._create_sagemaker_model", Mock())
@patch("sagemaker.production_variant", return_value=BASE_PRODUCTION_VARIANT)
def test_deploy_data_capture_config(production_variant, sagemaker_session):
model = Model(
MODEL_DATA, MODEL_IMAGE, role=ROLE, name=MODEL_NAME, sagemaker_session=sagemaker_session
)

data_capture_config = Mock()
data_capture_config_dict = {"EnableCapture": True}
data_capture_config._to_request_dict.return_value = data_capture_config_dict
model.deploy(
instance_type=INSTANCE_TYPE,
initial_instance_count=INSTANCE_COUNT,
data_capture_config=data_capture_config,
)

data_capture_config._to_request_dict.assert_called_with()
sagemaker_session.endpoint_from_production_variants.assert_called_with(
name=MODEL_NAME,
production_variants=[BASE_PRODUCTION_VARIANT],
tags=None,
kms_key=None,
wait=True,
data_capture_config_dict=data_capture_config_dict,
)


@patch("sagemaker.session.Session")
@patch("sagemaker.local.LocalSession")
def test_deploy_creates_correct_session(local_session, session):
# We expect a LocalSession when deploying to instance_type = 'local'
model = Model(MODEL_DATA, MODEL_IMAGE, role=ROLE)
model.deploy(endpoint_name="blah", instance_type="local", initial_instance_count=1)
assert model.sagemaker_session == local_session.return_value

# We expect a real Session when deploying to instance_type != local/local_gpu
model = Model(MODEL_DATA, MODEL_IMAGE, role=ROLE)
model.deploy(
endpoint_name="remote_endpoint", instance_type="ml.m4.4xlarge", initial_instance_count=2
)
assert model.sagemaker_session == session.return_value


def test_deploy_no_role(sagemaker_session):
model = Model(MODEL_DATA, MODEL_IMAGE, sagemaker_session=sagemaker_session)

with pytest.raises(ValueError, match="Role can not be null for deploying a model"):
model.deploy(instance_type=INSTANCE_TYPE, initial_instance_count=INSTANCE_COUNT)


@patch("sagemaker.model.Model._create_sagemaker_model", Mock())
@patch("sagemaker.predictor.RealTimePredictor._get_endpoint_config_name", Mock())
@patch("sagemaker.predictor.RealTimePredictor._get_model_names", Mock())
@patch("sagemaker.production_variant", return_value=BASE_PRODUCTION_VARIANT)
def test_deploy_predictor_cls(production_variant, sagemaker_session):
model = Model(
MODEL_DATA,
MODEL_IMAGE,
role=ROLE,
name=MODEL_NAME,
predictor_cls=sagemaker.predictor.RealTimePredictor,
sagemaker_session=sagemaker_session,
)

endpoint_name = "foo"
predictor = model.deploy(
instance_type=INSTANCE_TYPE,
initial_instance_count=INSTANCE_COUNT,
endpoint_name=endpoint_name,
)

assert isinstance(predictor, sagemaker.predictor.RealTimePredictor)
assert predictor.endpoint == endpoint_name
assert predictor.sagemaker_session == sagemaker_session
Loading