Skip to content

infra: split model unit tests by Model, FrameworkModel, and ModelPackage #1417

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Apr 15, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -12,12 +12,10 @@
# language governing permissions and limitations under the License.
from __future__ import absolute_import

import copy
import os
import subprocess

import sagemaker
from sagemaker.model import FrameworkModel, Model, ModelPackage
from sagemaker.model import FrameworkModel
from sagemaker.predictor import RealTimePredictor

import pytest
Expand Down Expand Up @@ -53,39 +51,6 @@
CODECOMMIT_BRANCH = "master"
REPO_DIR = "/tmp/repo_dir"


DESCRIBE_MODEL_PACKAGE_RESPONSE = {
"InferenceSpecification": {
"SupportedResponseMIMETypes": ["text"],
"SupportedContentTypes": ["text/csv"],
"SupportedTransformInstanceTypes": ["ml.m4.xlarge", "ml.m4.2xlarge"],
"Containers": [
{
"Image": "1.dkr.ecr.us-east-2.amazonaws.com/decision-trees-sample:latest",
"ImageDigest": "sha256:1234556789",
"ModelDataUrl": "s3://bucket/output/model.tar.gz",
}
],
"SupportedRealtimeInferenceInstanceTypes": ["ml.m4.xlarge", "ml.m4.2xlarge"],
},
"ModelPackageDescription": "Model Package created from training with "
"arn:aws:sagemaker:us-east-2:1234:algorithm/scikit-decision-trees",
"CreationTime": 1542752036.687,
"ModelPackageArn": "arn:aws:sagemaker:us-east-2:123:model-package/mp-scikit-decision-trees",
"ModelPackageStatusDetails": {"ValidationStatuses": [], "ImageScanStatuses": []},
"SourceAlgorithmSpecification": {
"SourceAlgorithms": [
{
"ModelDataUrl": "s3://bucket/output/model.tar.gz",
"AlgorithmName": "arn:aws:sagemaker:us-east-2:1234:algorithm/scikit-decision-trees",
}
]
},
"ModelPackageStatus": "Completed",
"ModelPackageName": "mp-scikit-decision-trees-1542410022-2018-11-20-22-13-56-502",
"CertifyForMarketplace": False,
}

DESCRIBE_COMPILATION_JOB_RESPONSE = {
"CompilationJobStatus": "Completed",
"ModelArtifacts": {"S3ModelArtifacts": "s3://output-path/model.tar.gz"},
Expand Down Expand Up @@ -417,181 +382,6 @@ def test_model_enable_network_isolation(sagemaker_session):
assert model.enable_network_isolation() is False


@patch("sagemaker.model.Model._create_sagemaker_model")
def test_model_create_transformer(create_sagemaker_model, sagemaker_session):
model_name = "auto-generated-model"
model = Model(MODEL_DATA, MODEL_IMAGE, name=model_name, sagemaker_session=sagemaker_session)

instance_type = "ml.m4.xlarge"
transformer = model.transformer(instance_count=1, instance_type=instance_type)

create_sagemaker_model.assert_called_with(instance_type, tags=None)

assert isinstance(transformer, sagemaker.transformer.Transformer)
assert transformer.model_name == model_name
assert transformer.instance_type == instance_type
assert transformer.instance_count == 1
assert transformer.sagemaker_session == sagemaker_session
assert transformer.base_transform_job_name == model_name

assert transformer.strategy is None
assert transformer.env is None
assert transformer.output_path is None
assert transformer.output_kms_key is None
assert transformer.accept is None
assert transformer.assemble_with is None
assert transformer.volume_kms_key is None
assert transformer.max_concurrent_transforms is None
assert transformer.max_payload is None
assert transformer.tags is None


@patch("sagemaker.model.Model._create_sagemaker_model")
def test_model_create_transformer_optional_params(create_sagemaker_model, sagemaker_session):
model = Model(MODEL_DATA, MODEL_IMAGE, sagemaker_session=sagemaker_session)

instance_type = "ml.m4.xlarge"
strategy = "MultiRecord"
assemble_with = "Line"
output_path = "s3://bucket/path"
kms_key = "key"
accept = "text/csv"
env = {"test": True}
max_concurrent_transforms = 1
max_payload = 6
tags = [{"Key": "k", "Value": "v"}]

transformer = model.transformer(
instance_count=1,
instance_type=instance_type,
strategy=strategy,
assemble_with=assemble_with,
output_path=output_path,
output_kms_key=kms_key,
accept=accept,
env=env,
max_concurrent_transforms=max_concurrent_transforms,
max_payload=max_payload,
tags=tags,
volume_kms_key=kms_key,
)

create_sagemaker_model.assert_called_with(instance_type, tags=tags)

assert isinstance(transformer, sagemaker.transformer.Transformer)
assert transformer.strategy == strategy
assert transformer.assemble_with == assemble_with
assert transformer.output_path == output_path
assert transformer.output_kms_key == kms_key
assert transformer.accept == accept
assert transformer.max_concurrent_transforms == max_concurrent_transforms
assert transformer.max_payload == max_payload
assert transformer.env == env
assert transformer.tags == tags
assert transformer.volume_kms_key == kms_key


@patch("sagemaker.model.Model._create_sagemaker_model")
def test_model_create_transformer_network_isolation(create_sagemaker_model, sagemaker_session):
model = Model(
MODEL_DATA, MODEL_IMAGE, sagemaker_session=sagemaker_session, enable_network_isolation=True
)

transformer = model.transformer(1, "ml.m4.xlarge", env={"should_be": "overwritten"})
assert transformer.env is None


@patch("sagemaker.session.Session")
@patch("sagemaker.local.LocalSession")
@patch("sagemaker.fw_utils.tar_and_upload_dir", MagicMock())
def test_transformer_creates_correct_session(local_session, session):
model = Model(MODEL_DATA, MODEL_IMAGE, sagemaker_session=None)
transformer = model.transformer(instance_count=1, instance_type="local")
assert model.sagemaker_session == local_session.return_value
assert transformer.sagemaker_session == local_session.return_value

model = Model(MODEL_DATA, MODEL_IMAGE, sagemaker_session=None)
transformer = model.transformer(instance_count=1, instance_type="ml.m5.xlarge")
assert model.sagemaker_session == session.return_value
assert transformer.sagemaker_session == session.return_value


def test_model_package_enable_network_isolation_with_no_product_id(sagemaker_session):
sagemaker_session.sagemaker_client.describe_model_package = Mock(
return_value=DESCRIBE_MODEL_PACKAGE_RESPONSE
)

model_package = ModelPackage(
role="role", model_package_arn="my-model-package", sagemaker_session=sagemaker_session
)
assert model_package.enable_network_isolation() is False


def test_model_package_enable_network_isolation_with_product_id(sagemaker_session):
model_package_response = copy.deepcopy(DESCRIBE_MODEL_PACKAGE_RESPONSE)
model_package_response["InferenceSpecification"]["Containers"].append(
{
"Image": "1.dkr.ecr.us-east-2.amazonaws.com/some-container:latest",
"ModelDataUrl": "s3://bucket/output/model.tar.gz",
"ProductId": "some-product-id",
}
)
sagemaker_session.sagemaker_client.describe_model_package = Mock(
return_value=model_package_response
)

model_package = ModelPackage(
role="role", model_package_arn="my-model-package", sagemaker_session=sagemaker_session
)
assert model_package.enable_network_isolation() is True


@patch("sagemaker.model.ModelPackage._create_sagemaker_model", Mock())
def test_model_package_create_transformer(sagemaker_session):
sagemaker_session.sagemaker_client.describe_model_package = Mock(
return_value=DESCRIBE_MODEL_PACKAGE_RESPONSE
)

model_package = ModelPackage(
role="role", model_package_arn="my-model-package", sagemaker_session=sagemaker_session
)
model_package.name = "auto-generated-model"
transformer = model_package.transformer(
instance_count=1, instance_type="ml.m4.xlarge", env={"test": True}
)
assert isinstance(transformer, sagemaker.transformer.Transformer)
assert transformer.model_name == "auto-generated-model"
assert transformer.instance_type == "ml.m4.xlarge"
assert transformer.env == {"test": True}


@patch("sagemaker.model.ModelPackage._create_sagemaker_model", Mock())
def test_model_package_create_transformer_with_product_id(sagemaker_session):
model_package_response = copy.deepcopy(DESCRIBE_MODEL_PACKAGE_RESPONSE)
model_package_response["InferenceSpecification"]["Containers"].append(
{
"Image": "1.dkr.ecr.us-east-2.amazonaws.com/some-container:latest",
"ModelDataUrl": "s3://bucket/output/model.tar.gz",
"ProductId": "some-product-id",
}
)
sagemaker_session.sagemaker_client.describe_model_package = Mock(
return_value=model_package_response
)

model_package = ModelPackage(
role="role", model_package_arn="my-model-package", sagemaker_session=sagemaker_session
)
model_package.name = "auto-generated-model"
transformer = model_package.transformer(
instance_count=1, instance_type="ml.m4.xlarge", env={"test": True}
)
assert isinstance(transformer, sagemaker.transformer.Transformer)
assert transformer.model_name == "auto-generated-model"
assert transformer.instance_type == "ml.m4.xlarge"
assert transformer.env is None


@patch("sagemaker.fw_utils.tar_and_upload_dir", MagicMock())
@patch("time.strftime", MagicMock(return_value=TIMESTAMP))
def test_model_delete_model(sagemaker_session, tmpdir):
Expand Down
126 changes: 126 additions & 0 deletions tests/unit/sagemaker/model/test_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
# Copyright 2017-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
from __future__ import absolute_import

import pytest
from mock import Mock, patch

import sagemaker
from sagemaker.model import Model

MODEL_DATA = "s3://bucket/model.tar.gz"
MODEL_IMAGE = "mi"


@pytest.fixture
def sagemaker_session():
return Mock()


@patch("sagemaker.model.Model._create_sagemaker_model")
def test_model_create_transformer(create_sagemaker_model, sagemaker_session):
model_name = "auto-generated-model"
model = Model(MODEL_DATA, MODEL_IMAGE, name=model_name, sagemaker_session=sagemaker_session)

instance_type = "ml.m4.xlarge"
transformer = model.transformer(instance_count=1, instance_type=instance_type)

create_sagemaker_model.assert_called_with(instance_type, tags=None)

assert isinstance(transformer, sagemaker.transformer.Transformer)
assert transformer.model_name == model_name
assert transformer.instance_type == instance_type
assert transformer.instance_count == 1
assert transformer.sagemaker_session == sagemaker_session
assert transformer.base_transform_job_name == model_name

assert transformer.strategy is None
assert transformer.env is None
assert transformer.output_path is None
assert transformer.output_kms_key is None
assert transformer.accept is None
assert transformer.assemble_with is None
assert transformer.volume_kms_key is None
assert transformer.max_concurrent_transforms is None
assert transformer.max_payload is None
assert transformer.tags is None


@patch("sagemaker.model.Model._create_sagemaker_model")
def test_model_create_transformer_optional_params(create_sagemaker_model, sagemaker_session):
model = Model(MODEL_DATA, MODEL_IMAGE, sagemaker_session=sagemaker_session)

instance_type = "ml.m4.xlarge"
strategy = "MultiRecord"
assemble_with = "Line"
output_path = "s3://bucket/path"
kms_key = "key"
accept = "text/csv"
env = {"test": True}
max_concurrent_transforms = 1
max_payload = 6
tags = [{"Key": "k", "Value": "v"}]

transformer = model.transformer(
instance_count=1,
instance_type=instance_type,
strategy=strategy,
assemble_with=assemble_with,
output_path=output_path,
output_kms_key=kms_key,
accept=accept,
env=env,
max_concurrent_transforms=max_concurrent_transforms,
max_payload=max_payload,
tags=tags,
volume_kms_key=kms_key,
)

create_sagemaker_model.assert_called_with(instance_type, tags=tags)

assert isinstance(transformer, sagemaker.transformer.Transformer)
assert transformer.strategy == strategy
assert transformer.assemble_with == assemble_with
assert transformer.output_path == output_path
assert transformer.output_kms_key == kms_key
assert transformer.accept == accept
assert transformer.max_concurrent_transforms == max_concurrent_transforms
assert transformer.max_payload == max_payload
assert transformer.env == env
assert transformer.tags == tags
assert transformer.volume_kms_key == kms_key


@patch("sagemaker.model.Model._create_sagemaker_model")
def test_model_create_transformer_network_isolation(create_sagemaker_model, sagemaker_session):
model = Model(
MODEL_DATA, MODEL_IMAGE, sagemaker_session=sagemaker_session, enable_network_isolation=True
)

transformer = model.transformer(1, "ml.m4.xlarge", env={"should_be": "overwritten"})
assert transformer.env is None


@patch("sagemaker.session.Session")
@patch("sagemaker.local.LocalSession")
@patch("sagemaker.fw_utils.tar_and_upload_dir", Mock())
def test_transformer_creates_correct_session(local_session, session):
model = Model(MODEL_DATA, MODEL_IMAGE, sagemaker_session=None)
transformer = model.transformer(instance_count=1, instance_type="local")
assert model.sagemaker_session == local_session.return_value
assert transformer.sagemaker_session == local_session.return_value

model = Model(MODEL_DATA, MODEL_IMAGE, sagemaker_session=None)
transformer = model.transformer(instance_count=1, instance_type="ml.m5.xlarge")
assert model.sagemaker_session == session.return_value
assert transformer.sagemaker_session == session.return_value
Loading