Skip to content

infra: improve unit tests for creating Transformers and transform jobs #1408

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 14, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
141 changes: 124 additions & 17 deletions tests/unit/test_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,64 @@ def test_transformer_fails_without_model():
)


def test_transformer_init(sagemaker_session):
transformer = Transformer(
MODEL_NAME, INSTANCE_COUNT, INSTANCE_TYPE, sagemaker_session=sagemaker_session
)

assert transformer.model_name == MODEL_NAME
assert transformer.instance_count == INSTANCE_COUNT
assert transformer.instance_type == INSTANCE_TYPE
assert transformer.sagemaker_session == sagemaker_session

assert transformer._current_job_name is None
assert transformer.latest_transform_job is None
assert transformer._reset_output_path is False


def test_transformer_init_optional_params(sagemaker_session):
strategy = "MultiRecord"
assemble_with = "Line"
accept = "text/csv"
max_concurrent_transforms = 100
max_payload = 100
tags = {"Key": "foo", "Value": "bar"}
env = {"FOO": "BAR"}

transformer = Transformer(
MODEL_NAME,
INSTANCE_COUNT,
INSTANCE_TYPE,
strategy=strategy,
assemble_with=assemble_with,
output_path=OUTPUT_PATH,
output_kms_key=KMS_KEY_ID,
accept=accept,
max_concurrent_transforms=max_concurrent_transforms,
max_payload=max_payload,
tags=tags,
env=env,
base_transform_job_name=JOB_NAME,
sagemaker_session=sagemaker_session,
volume_kms_key=KMS_KEY_ID,
)

assert transformer.model_name == MODEL_NAME
assert transformer.strategy == strategy
assert transformer.env == env
assert transformer.output_path == OUTPUT_PATH
assert transformer.output_kms_key == KMS_KEY_ID
assert transformer.accept == accept
assert transformer.assemble_with == assemble_with
assert transformer.instance_count == INSTANCE_COUNT
assert transformer.instance_type == INSTANCE_TYPE
assert transformer.volume_kms_key == KMS_KEY_ID
assert transformer.max_concurrent_transforms == max_concurrent_transforms
assert transformer.max_payload == max_payload
assert transformer.tags == tags
assert transformer.base_transform_job_name == JOB_NAME


@patch("sagemaker.transformer._TransformJob.start_new")
def test_transform_with_all_params(start_new_job, transformer):
content_type = "text/csv"
Expand Down Expand Up @@ -333,29 +391,78 @@ def test_prepare_init_params_from_job_description_all_keys(transformer):


# _TransformJob tests
def test_start_new(transformer, sagemaker_session):
@patch("sagemaker.transformer._TransformJob._load_config")
@patch("sagemaker.transformer._TransformJob._prepare_data_processing")
def test_start_new(prepare_data_processing, load_config, sagemaker_session):
input_config = "input"
output_config = "output"
resource_config = "resource"
load_config.return_value = {
"input_config": input_config,
"output_config": output_config,
"resource_config": resource_config,
}

strategy = "MultiRecord"
max_concurrent_transforms = 100
max_payload = 100
tags = {"Key": "foo", "Value": "bar"}
env = {"FOO": "BAR"}

transformer = Transformer(
MODEL_NAME,
INSTANCE_COUNT,
INSTANCE_TYPE,
strategy=strategy,
output_path=OUTPUT_PATH,
max_concurrent_transforms=max_concurrent_transforms,
max_payload=max_payload,
tags=tags,
env=env,
sagemaker_session=sagemaker_session,
)
transformer._current_job_name = JOB_NAME

job = _TransformJob(sagemaker_session, JOB_NAME)
started_job = job.start_new(
transformer,
DATA,
S3_DATA_TYPE,
None,
None,
None,
None,
None,
None,
{"ExperimentName": "exp"},
content_type = "text/csv"
compression_type = "Gzip"
split_type = "Line"
io_filter = "$"
join_source = "Input"
job = _TransformJob.start_new(
transformer=transformer,
data=DATA,
data_type=S3_DATA_TYPE,
content_type=content_type,
compression_type=compression_type,
split_type=split_type,
input_filter=io_filter,
output_filter=io_filter,
join_source=join_source,
experiment_config={"ExperimentName": "exp"},
)

assert started_job.sagemaker_session == sagemaker_session
sagemaker_session.transform.assert_called_once()
assert job.sagemaker_session == sagemaker_session
assert job.job_name == JOB_NAME

called_args = sagemaker_session.transform.call_args
load_config.assert_called_with(
DATA, S3_DATA_TYPE, content_type, compression_type, split_type, transformer
)
prepare_data_processing.assert_called_with(io_filter, io_filter, join_source)

assert called_args[1]["experiment_config"] == {"ExperimentName": "exp"}
sagemaker_session.transform.assert_called_with(
job_name=JOB_NAME,
model_name=MODEL_NAME,
strategy=strategy,
max_concurrent_transforms=max_concurrent_transforms,
max_payload=max_payload,
env=env,
input_config=input_config,
output_config=output_config,
resource_config=resource_config,
experiment_config={"ExperimentName": "exp"},
tags=tags,
data_processing=prepare_data_processing.return_value,
)


def test_load_config(transformer):
Expand Down