Skip to content

feature: enable sklearn for network isolation mode #1051

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Sep 20, 2019
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion src/sagemaker/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -810,7 +810,10 @@ def _framework_env_vars(self):
"""Placeholder docstring"""
if self.uploaded_code:
script_name = self.uploaded_code.script_name
dir_name = self.uploaded_code.s3_prefix
if self.enable_network_isolation():
dir_name = "/opt/ml/model/code"
else:
dir_name = self.uploaded_code.s3_prefix
else:
script_name = self.entry_point
dir_name = "file://" + self.source_dir
Expand Down
7 changes: 5 additions & 2 deletions src/sagemaker/sklearn/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,10 +135,13 @@ def prepare_container_def(self, instance_type, accelerator_type=None):
)

deploy_key_prefix = model_code_key_prefix(self.key_prefix, self.name, deploy_image)
self._upload_code(deploy_key_prefix)
self._upload_code(key_prefix=deploy_key_prefix, repack=self.enable_network_isolation())
deploy_env = dict(self.env)
deploy_env.update(self._framework_env_vars())

if self.model_server_workers:
deploy_env[MODEL_SERVER_WORKERS_PARAM_NAME.upper()] = str(self.model_server_workers)
return sagemaker.container_def(deploy_image, self.model_data, deploy_env)
model_data_uri = (
self.repacked_model_data if self.enable_network_isolation() else self.model_data
)
return sagemaker.container_def(deploy_image, model_data_uri, deploy_env)
19 changes: 19 additions & 0 deletions tests/unit/test_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,6 +154,25 @@ def test_prepare_container_def(time, sagemaker_session):
}


@patch("shutil.rmtree", MagicMock())
@patch("tarfile.open", MagicMock())
@patch("os.listdir", MagicMock(return_value=["blah.py"]))
@patch("time.strftime", return_value=TIMESTAMP)
def test_prepare_container_def_with_network_isolation(time, sagemaker_session):
model = DummyFrameworkModel(sagemaker_session, enable_network_isolation=True)
assert model.prepare_container_def(INSTANCE_TYPE) == {
"Environment": {
"SAGEMAKER_PROGRAM": ENTRY_POINT,
"SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code",
"SAGEMAKER_CONTAINER_LOG_LEVEL": "20",
"SAGEMAKER_REGION": REGION,
"SAGEMAKER_ENABLE_CLOUDWATCH_METRICS": "false",
},
"Image": MODEL_IMAGE,
"ModelDataUrl": MODEL_DATA,
}


@patch("shutil.rmtree", MagicMock())
@patch("tarfile.open", MagicMock())
@patch("os.path.exists", MagicMock(return_value=True))
Expand Down
20 changes: 20 additions & 0 deletions tests/unit/test_sklearn.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
from sagemaker.sklearn import defaults
from sagemaker.sklearn import SKLearn
from sagemaker.sklearn import SKLearnPredictor, SKLearnModel
from sagemaker.fw_utils import UploadedCode

DATA_DIR = os.path.join(os.path.dirname(__file__), "..", "data")
SCRIPT_PATH = os.path.join(DATA_DIR, "dummy_script.py")
Expand Down Expand Up @@ -168,6 +169,25 @@ def test_create_model(sagemaker_session):
assert model_values["Image"] == default_image_uri


@patch("sagemaker.model.FrameworkModel._upload_code")
def test_create_model_with_network_isolation(upload, sagemaker_session):
source_dir = "s3://mybucket/source"
repacked_model_data = "s3://mybucket/prefix/model.tar.gz"

sklearn_model = SKLearnModel(
model_data=source_dir,
role=ROLE,
sagemaker_session=sagemaker_session,
entry_point=SCRIPT_PATH,
enable_network_isolation=True,
)
sklearn_model.uploaded_code = UploadedCode(s3_prefix=repacked_model_data, script_name="script")
sklearn_model.repacked_model_data = repacked_model_data
model_values = sklearn_model.prepare_container_def(CPU)
assert model_values["Environment"]["SAGEMAKER_SUBMIT_DIRECTORY"] == "/opt/ml/model/code"
assert model_values["ModelDataUrl"] == repacked_model_data


def test_create_model_from_estimator(sagemaker_session, sklearn_version):
container_log_level = '"logging.INFO"'
source_dir = "s3://mybucket/source"
Expand Down