@@ -185,6 +185,7 @@ def remote(
185
185
methods that are not available via PyPI or conda. Default value is ``False``.
186
186
187
187
instance_count (int): The number of instances to use. Defaults to 1.
188
+ NOTE: Remote function does not support instance_count > 1
188
189
189
190
instance_type (str): The Amazon Elastic Compute Cloud (EC2) instance type to use to run
190
191
the SageMaker job. e.g. ml.c4.xlarge. If not provided, a ValueError is thrown.
@@ -255,6 +256,12 @@ def _remote(func):
255
256
@functools .wraps (func )
256
257
def wrapper (* args , ** kwargs ):
257
258
259
+ if instance_count > 1 :
260
+ raise ValueError (
261
+ "Remote function do not support training on multi instances. "
262
+ + "Please provide instance_count = 1"
263
+ )
264
+
258
265
RemoteExecutor ._validate_submit_args (func , * args , ** kwargs )
259
266
260
267
job_settings = _JobSettings (
@@ -574,6 +581,7 @@ def __init__(
574
581
and methods that are not available via PyPI or conda. Default value is ``False``.
575
582
576
583
instance_count (int): The number of instances to use. Defaults to 1.
584
+ NOTE: Remote function does not support instance_count > 1
577
585
578
586
instance_type (str): The Amazon Elastic Compute Cloud (EC2) instance type to use to run
579
587
the SageMaker job. e.g. ml.c4.xlarge. If not provided, a ValueError is thrown.
@@ -647,6 +655,12 @@ def __init__(
647
655
if self .max_parallel_jobs <= 0 :
648
656
raise ValueError ("max_parallel_jobs must be greater than 0." )
649
657
658
+ if instance_count > 1 :
659
+ raise ValueError (
660
+ "Remote function do not support training on multi instances. "
661
+ + "Please provide instance_count = 1"
662
+ )
663
+
650
664
self .job_settings = _JobSettings (
651
665
dependencies = dependencies ,
652
666
pre_execution_commands = pre_execution_commands ,
0 commit comments