@@ -51,7 +51,7 @@ def mxnet_training_job(sagemaker_session):
51
51
def test_attach_deploy (mxnet_training_job , sagemaker_session ):
52
52
endpoint_name = 'test-mxnet-attach-deploy-{}' .format (int (time .time ()))
53
53
54
- with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session , minutes = 15 ):
54
+ with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session , minutes = 20 ):
55
55
estimator = MXNet .attach (mxnet_training_job , sagemaker_session = sagemaker_session )
56
56
predictor = estimator .deploy (1 , 'ml.m4.xlarge' , endpoint_name = endpoint_name )
57
57
data = numpy .zeros (shape = (1 , 1 , 28 , 28 ))
@@ -61,7 +61,7 @@ def test_attach_deploy(mxnet_training_job, sagemaker_session):
61
61
def test_deploy_model (mxnet_training_job , sagemaker_session ):
62
62
endpoint_name = 'test-mxnet-deploy-model-{}' .format (int (time .time ()))
63
63
64
- with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session , minutes = 15 ):
64
+ with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session , minutes = 20 ):
65
65
desc = sagemaker_session .sagemaker_client .describe_training_job (TrainingJobName = mxnet_training_job )
66
66
model_data = desc ['ModelArtifacts' ]['S3ModelArtifacts' ]
67
67
script_path = os .path .join (DATA_DIR , 'mxnet_mnist' , 'mnist.py' )
0 commit comments