@@ -824,22 +824,29 @@ Enhancements
824
824
825
825
.. ipython :: python
826
826
827
- import datetime
828
- df = pd.DataFrame({
829
- ' Branch' : ' A A A A A B' .split(),
830
- ' Buyer' : ' Carl Mark Carl Carl Joe Joe' .split(),
831
- ' Quantity' : [1 , 3 , 5 , 1 , 8 , 1 ],
832
- ' Date' : [datetime.datetime(2013 ,11 ,1 ,13 ,0 ), datetime.datetime(2013 ,9 ,1 ,13 ,5 ),
833
- datetime.datetime(2013 ,10 ,1 ,20 ,0 ), datetime.datetime(2013 ,10 ,2 ,10 ,0 ),
834
- datetime.datetime(2013 ,11 ,1 ,20 ,0 ), datetime.datetime(2013 ,10 ,2 ,10 ,0 )],
835
- ' PayDay' : [datetime.datetime(2013 ,10 ,4 ,0 ,0 ), datetime.datetime(2013 ,10 ,15 ,13 ,5 ),
836
- datetime.datetime(2013 ,9 ,5 ,20 ,0 ), datetime.datetime(2013 ,11 ,2 ,10 ,0 ),
837
- datetime.datetime(2013 ,10 ,7 ,20 ,0 ), datetime.datetime(2013 ,9 ,5 ,10 ,0 )]})
838
- df
839
-
840
- pivot_table(df, index = Grouper(freq = ' M' , key = ' Date' ),
841
- columns = Grouper(freq = ' M' , key = ' PayDay' ),
842
- values = ' Quantity' , aggfunc = np.sum)
827
+ import datetime
828
+ df = pd.DataFrame({
829
+ ' Branch' : ' A A A A A B' .split(),
830
+ ' Buyer' : ' Carl Mark Carl Carl Joe Joe' .split(),
831
+ ' Quantity' : [1 , 3 , 5 , 1 , 8 , 1 ],
832
+ ' Date' : [datetime.datetime(2013 , 11 , 1 , 13 , 0 ),
833
+ datetime.datetime(2013 , 9 , 1 , 13 , 5 ),
834
+ datetime.datetime(2013 , 10 , 1 , 20 , 0 ),
835
+ datetime.datetime(2013 , 10 , 2 , 10 , 0 ),
836
+ datetime.datetime(2013 , 11 , 1 , 20 , 0 ),
837
+ datetime.datetime(2013 , 10 , 2 , 10 , 0 )],
838
+ ' PayDay' : [datetime.datetime(2013 , 10 , 4 , 0 , 0 ),
839
+ datetime.datetime(2013 , 10 , 15 , 13 , 5 ),
840
+ datetime.datetime(2013 , 9 , 5 , 20 , 0 ),
841
+ datetime.datetime(2013 , 11 , 2 , 10 , 0 ),
842
+ datetime.datetime(2013 , 10 , 7 , 20 , 0 ),
843
+ datetime.datetime(2013 , 9 , 5 , 10 , 0 )]})
844
+ df
845
+
846
+ df.pivot_table(values = ' Quantity' ,
847
+ index = pd.Grouper(freq = ' M' , key = ' Date' ),
848
+ columns = pd.Grouper(freq = ' M' , key = ' PayDay' ),
849
+ aggfunc = np.sum)
843
850
844
851
- Arrays of strings can be wrapped to a specified width (``str.wrap ``) (:issue: `6999 `)
845
852
- Add :meth: `~Series.nsmallest ` and :meth: `Series.nlargest ` methods to Series, See :ref: `the docs <basics.nsorted >` (:issue: `3960 `)
0 commit comments