Skip to content

Create fractional_cover_problem.py #9973

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
Oct 7, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
102 changes: 102 additions & 0 deletions greedy_methods/fractional_cover_problem.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
# https://en.wikipedia.org/wiki/Set_cover_problem

from dataclasses import dataclass
from operator import attrgetter


@dataclass
class Item:
weight: int
value: int

@property
def ratio(self) -> float:
"""
Return the value-to-weight ratio for the item.
Returns:
float: The value-to-weight ratio for the item.
Examples:
>>> Item(10, 65).ratio
6.5
>>> Item(20, 100).ratio
5.0
>>> Item(30, 120).ratio
4.0
"""
return self.value / self.weight


def fractional_cover(items: list[Item], capacity: int) -> float:
"""
Solve the Fractional Cover Problem.
Args:
items: A list of items, where each item has weight and value attributes.
capacity: The maximum weight capacity of the knapsack.
Returns:
The maximum value that can be obtained by selecting fractions of items to cover
the knapsack's capacity.
Raises:
ValueError: If capacity is negative.
Examples:
>>> fractional_cover((Item(10, 60), Item(20, 100), Item(30, 120)), capacity=50)
240.0
>>> fractional_cover([Item(20, 100), Item(30, 120), Item(10, 60)], capacity=25)
135.0
>>> fractional_cover([Item(10, 60), Item(20, 100), Item(30, 120)], capacity=60)
280.0
>>> fractional_cover(items=[Item(5, 30), Item(10, 60), Item(15, 90)], capacity=30)
180.0
>>> fractional_cover(items=[], capacity=50)
0.0
>>> fractional_cover(items=[Item(10, 60)], capacity=5)
30.0
>>> fractional_cover(items=[Item(10, 60)], capacity=1)
6.0
>>> fractional_cover(items=[Item(10, 60)], capacity=0)
0.0
>>> fractional_cover(items=[Item(10, 60)], capacity=-1)
Traceback (most recent call last):
...
ValueError: Capacity cannot be negative
"""
if capacity < 0:
raise ValueError("Capacity cannot be negative")

total_value = 0.0
remaining_capacity = capacity

# Sort the items by their value-to-weight ratio in descending order
for item in sorted(items, key=attrgetter("ratio"), reverse=True):
if remaining_capacity == 0:
break

weight_taken = min(item.weight, remaining_capacity)
total_value += weight_taken * item.ratio
remaining_capacity -= weight_taken

return total_value


if __name__ == "__main__":
import doctest

if result := doctest.testmod().failed:
print(f"{result} test(s) failed")
else:
print("All tests passed")