Skip to content

add canny edge detection algorithm and modify sobel_filter #991

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jul 10, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
107 changes: 107 additions & 0 deletions digital_image_processing/edge_detection/canny.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
import cv2
import numpy as np
from digital_image_processing.filters.convolve import img_convolve
from digital_image_processing.filters.sobel_filter import sobel_filter

PI = 180


def gen_gaussian_kernel(k_size, sigma):
center = k_size // 2
x, y = np.mgrid[0 - center:k_size - center, 0 - center:k_size - center]
g = 1 / (2 * np.pi * sigma) * np.exp(-(np.square(x) + np.square(y)) / (2 * np.square(sigma)))
return g


def canny(image, threshold_low=15, threshold_high=30, weak=128, strong=255):
image_row, image_col = image.shape[0], image.shape[1]
# gaussian_filter
gaussian_out = img_convolve(image, gen_gaussian_kernel(9, sigma=1.4))
# get the gradient and degree by sobel_filter
sobel_grad, sobel_theta = sobel_filter(gaussian_out)
gradient_direction = np.rad2deg(sobel_theta)
gradient_direction += PI

dst = np.zeros((image_row, image_col))

"""
Non-maximum suppression. If the edge strength of the current pixel is the largest compared to the other pixels
in the mask with the same direction, the value will be preserved. Otherwise, the value will be suppressed.
"""
for row in range(1, image_row - 1):
for col in range(1, image_col - 1):
direction = gradient_direction[row, col]

if (
0 <= direction < 22.5
or 15 * PI / 8 <= direction <= 2 * PI
or 7 * PI / 8 <= direction <= 9 * PI / 8
):
W = sobel_grad[row, col - 1]
E = sobel_grad[row, col + 1]
if sobel_grad[row, col] >= W and sobel_grad[row, col] >= E:
dst[row, col] = sobel_grad[row, col]

elif (PI / 8 <= direction < 3 * PI / 8) or (9 * PI / 8 <= direction < 11 * PI / 8):
SW = sobel_grad[row + 1, col - 1]
NE = sobel_grad[row - 1, col + 1]
if sobel_grad[row, col] >= SW and sobel_grad[row, col] >= NE:
dst[row, col] = sobel_grad[row, col]

elif (3 * PI / 8 <= direction < 5 * PI / 8) or (11 * PI / 8 <= direction < 13 * PI / 8):
N = sobel_grad[row - 1, col]
S = sobel_grad[row + 1, col]
if sobel_grad[row, col] >= N and sobel_grad[row, col] >= S:
dst[row, col] = sobel_grad[row, col]

elif (5 * PI / 8 <= direction < 7 * PI / 8) or (13 * PI / 8 <= direction < 15 * PI / 8):
NW = sobel_grad[row - 1, col - 1]
SE = sobel_grad[row + 1, col + 1]
if sobel_grad[row, col] >= NW and sobel_grad[row, col] >= SE:
dst[row, col] = sobel_grad[row, col]

"""
High-Low threshold detection. If an edge pixel’s gradient value is higher than the high threshold
value, it is marked as a strong edge pixel. If an edge pixel’s gradient value is smaller than the high
threshold value and larger than the low threshold value, it is marked as a weak edge pixel. If an edge
pixel's value is smaller than the low threshold value, it will be suppressed.
"""
if dst[row, col] >= threshold_high:
dst[row, col] = strong
elif dst[row, col] <= threshold_low:
dst[row, col] = 0
else:
dst[row, col] = weak

"""
Edge tracking. Usually a weak edge pixel caused from true edges will be connected to a strong edge pixel while
noise responses are unconnected. As long as there is one strong edge pixel that is involved in its 8-connected
neighborhood, that weak edge point can be identified as one that should be preserved.
"""
for row in range(1, image_row):
for col in range(1, image_col):
if dst[row, col] == weak:
if 255 in (
dst[row, col + 1],
dst[row, col - 1],
dst[row - 1, col],
dst[row + 1, col],
dst[row - 1, col - 1],
dst[row + 1, col - 1],
dst[row - 1, col + 1],
dst[row + 1, col + 1],
):
dst[row, col] = strong
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we avoid the backslashes with something like:

                if 255 in (
                    dst[row, col + 1],
                    dst[row, col - 1],
                    dst[row - 1, col],
                    dst[row + 1, col],
                    dst[row - 1, col - 1],
                    dst[row + 1, col - 1],
                    dst[row - 1, col + 1],
                    dst[row + 1, col + 1],
                ):

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Wow, concise and clear!

else:
dst[row, col] = 0

return dst


if __name__ == '__main__':
# read original image in gray mode
lena = cv2.imread(r'../image_data/lena.jpg', 0)
# canny edge detection
canny_dst = canny(lena)
cv2.imshow('canny', canny_dst)
cv2.waitKey(0)
23 changes: 15 additions & 8 deletions digital_image_processing/filters/sobel_filter.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,18 @@ def sobel_filter(image):
kernel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
kernel_y = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])

dst_x = img_convolve(image, kernel_x)
dst_y = img_convolve(image, kernel_y)
dst = np.sqrt((np.square(dst_x)) + (np.square(dst_y))).astype(np.uint8)
degree = np.arctan2(dst_y, dst_x)
return dst, degree
dst_x = np.abs(img_convolve(image, kernel_x))
dst_y = np.abs(img_convolve(image, kernel_y))
# modify the pix within [0, 255]
dst_x = dst_x * 255/np.max(dst_x)
dst_y = dst_y * 255/np.max(dst_y)

dst_xy = np.sqrt((np.square(dst_x)) + (np.square(dst_y)))
dst_xy = dst_xy * 255/np.max(dst_xy)
dst = dst_xy.astype(np.uint8)

theta = np.arctan2(dst_y, dst_x)
return dst, theta


if __name__ == '__main__':
Expand All @@ -23,9 +30,9 @@ def sobel_filter(image):
# turn image in gray scale value
gray = cvtColor(img, COLOR_BGR2GRAY)

sobel, d = sobel_filter(gray)
sobel_grad, sobel_theta = sobel_filter(gray)

# show result images
imshow('sobel filter', sobel)
imshow('sobel degree', d)
imshow('sobel filter', sobel_grad)
imshow('sobel theta', sobel_theta)
waitKey(0)