Skip to content

UPDATED rat_in_maze.py #9148

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
Oct 4, 2023
Merged
Changes from 15 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
178 changes: 129 additions & 49 deletions backtracking/rat_in_maze.py
Original file line number Diff line number Diff line change
@@ -1,81 +1,155 @@
from __future__ import annotations


def solve_maze(maze: list[list[int]]) -> bool:
def solve_maze(
maze: list[list[int]],
source_row: int,
source_column: int,
destination_row: int,
destination_column: int,
) -> list[list[int]]:
"""
This method solves the "rat in maze" problem.
In this problem we have some n by n matrix, a start point and an end point.
We want to go from the start to the end. In this matrix zeroes represent walls
and ones paths we can use.
Parameters :
maze(2D matrix) : maze
- maze(2D matrix) : maze
- source_row (int): The row index of the starting point.
- source_column (int): The column index of the starting point.
- destination_row (int): The row index of the destination point.
- destination_column (int): The column index of the destination point.
Returns:
Return: True if the maze has a solution or False if it does not.
- solution (list[list[int]]): A 2D matrix representing the solution path
if it exists.
Raises:
- ValueError: If no solution exists or if the source or
destination coordinates are invalid.
Description:
This method navigates through a maze represented as an n by n matrix,
starting from a specified source cell and
aiming to reach a destination cell.
The maze consists of walls (1s) and open paths (0s).
By providing custom row and column values, the source and destination
cells can be adjusted.
>>> maze = [[0, 1, 0, 1, 1],
... [0, 0, 0, 0, 0],
... [1, 0, 1, 0, 1],
... [0, 0, 1, 0, 0],
... [1, 0, 0, 1, 0]]
>>> solve_maze(maze)
[1, 0, 0, 0, 0]
[1, 1, 1, 1, 0]
[0, 0, 0, 1, 0]
[0, 0, 0, 1, 1]
[0, 0, 0, 0, 1]
True
>>> solve_maze(maze,0,0,len(maze)-1,len(maze)-1) # doctest: +NORMALIZE_WHITESPACE
[[0, 1, 1, 1, 1],
[0, 0, 0, 0, 1],
[1, 1, 1, 0, 1],
[1, 1, 1, 0, 0],
[1, 1, 1, 1, 0]]

Note:
In the output maze, the zeros (0s) represent one of the possible
paths from the source to the destination.

>>> maze = [[0, 1, 0, 1, 1],
... [0, 0, 0, 0, 0],
... [0, 0, 0, 0, 1],
... [0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0]]
>>> solve_maze(maze)
[1, 0, 0, 0, 0]
[1, 0, 0, 0, 0]
[1, 0, 0, 0, 0]
[1, 0, 0, 0, 0]
[1, 1, 1, 1, 1]
True
>>> solve_maze(maze,0,0,len(maze)-1,len(maze)-1) # doctest: +NORMALIZE_WHITESPACE
[[0, 1, 1, 1, 1],
[0, 1, 1, 1, 1],
[0, 1, 1, 1, 1],
[0, 1, 1, 1, 1],
[0, 0, 0, 0, 0]]

>>> maze = [[0, 0, 0],
... [0, 1, 0],
... [1, 0, 0]]
>>> solve_maze(maze)
[1, 1, 1]
[0, 0, 1]
[0, 0, 1]
True
>>> solve_maze(maze,0,0,len(maze)-1,len(maze)-1) # doctest: +NORMALIZE_WHITESPACE
[[0, 0, 0],
[1, 1, 0],
[1, 1, 0]]

>>> maze = [[0, 1, 0],
>>> maze = [[1, 0, 0],
... [0, 1, 0],
... [1, 0, 0]]
>>> solve_maze(maze)
No solution exists!
False
>>> solve_maze(maze,0,1,len(maze)-1,len(maze)-1) # doctest: +NORMALIZE_WHITESPACE
[[1, 0, 0],
[1, 1, 0],
[1, 1, 0]]

>>> maze = [[1, 1, 0, 0, 1, 0, 0, 1],
... [1, 0, 1, 0, 0, 1, 1, 1],
... [0, 1, 0, 1, 0, 0, 1, 0],
... [1, 1, 1, 0, 0, 1, 0, 1],
... [0, 1, 0, 0, 1, 0, 1, 1],
... [0, 0, 0, 1, 1, 1, 0, 1],
... [0, 1, 0, 1, 0, 1, 1, 1],
... [1, 1, 0, 0, 0, 0, 0, 1]]
>>> solve_maze(maze,0,2,len(maze)-1,2) # doctest: +NORMALIZE_WHITESPACE
[[1, 1, 0, 0, 1, 1, 1, 1],
[1, 1, 1, 0, 0, 1, 1, 1],
[1, 1, 1, 1, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 1, 1, 1],
[1, 1, 0, 0, 1, 1, 1, 1],
[1, 1, 0, 1, 1, 1, 1, 1],
[1, 1, 0, 1, 1, 1, 1, 1],
[1, 1, 0, 1, 1, 1, 1, 1]]
>>> maze = [[1, 0, 0],
... [0, 1, 1],
... [1, 0, 1]]
>>> solve_maze(maze,0,1,len(maze)-1,len(maze)-1)
Traceback (most recent call last):
...
ValueError: No solution exists!

>>> maze = [[0, 0],
... [1, 1]]
>>> solve_maze(maze,0,0,len(maze)-1,len(maze)-1)
Traceback (most recent call last):
...
ValueError: No solution exists!

>>> maze = [[0, 1],
... [1, 0]]
>>> solve_maze(maze)
No solution exists!
False
>>> solve_maze(maze,2,0,len(maze)-1,len(maze)-1)
Traceback (most recent call last):
...
ValueError: Invalid source or destination coordinates

>>> maze = [[1, 0, 0],
... [0, 1, 0],
... [1, 0, 0]]
>>> solve_maze(maze,0,1,len(maze),len(maze)-1)
Traceback (most recent call last):
...
ValueError: Invalid source or destination coordinates
"""
size = len(maze)
# Check if source and destination coordinates are Invalid.
if not (0 <= source_row <= size - 1 and 0 <= source_column <= size - 1) or (
not (0 <= destination_row <= size - 1 and 0 <= destination_column <= size - 1)
):
raise ValueError("Invalid source or destination coordinates")
# We need to create solution object to save path.
solutions = [[0 for _ in range(size)] for _ in range(size)]
solved = run_maze(maze, 0, 0, solutions)
solutions = [[1 for _ in range(size)] for _ in range(size)]
solved = run_maze(
maze, source_row, source_column, destination_row, destination_column, solutions
)
if solved:
print("\n".join(str(row) for row in solutions))
return solutions
else:
print("No solution exists!")
return solved
raise ValueError("No solution exists!")


def run_maze(maze: list[list[int]], i: int, j: int, solutions: list[list[int]]) -> bool:
def run_maze(
maze: list[list[int]],
i: int,
j: int,
destination_row: int,
destination_column: int,
solutions: list[list[int]],
) -> bool:
"""
This method is recursive starting from (i, j) and going in one of four directions:
up, down, left, right.
If a path is found to destination it returns True otherwise it returns False.
Parameters:
Parameters
maze(2D matrix) : maze
i, j : coordinates of matrix
solutions(2D matrix) : solutions
Expand All @@ -84,35 +158,41 @@ def run_maze(maze: list[list[int]], i: int, j: int, solutions: list[list[int]])
"""
size = len(maze)
# Final check point.
if i == j == (size - 1):
solutions[i][j] = 1
if i == destination_row and j == destination_column and maze[i][j] == 0:
solutions[i][j] = 0
return True

lower_flag = (not i < 0) and (not j < 0) # Check lower bounds
upper_flag = (i < size) and (j < size) # Check upper bounds

if lower_flag and upper_flag:
# check for already visited and block points.
block_flag = (not solutions[i][j]) and (not maze[i][j])
block_flag = (solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
solutions[i][j] = 1
solutions[i][j] = 0

# check for directions
if (
run_maze(maze, i + 1, j, solutions)
or run_maze(maze, i, j + 1, solutions)
or run_maze(maze, i - 1, j, solutions)
or run_maze(maze, i, j - 1, solutions)
run_maze(maze, i + 1, j, destination_row, destination_column, solutions)
or run_maze(
maze, i, j + 1, destination_row, destination_column, solutions
)
or run_maze(
maze, i - 1, j, destination_row, destination_column, solutions
)
or run_maze(
maze, i, j - 1, destination_row, destination_column, solutions
)
):
return True

solutions[i][j] = 0
solutions[i][j] = 1
return False
return False


if __name__ == "__main__":
import doctest

doctest.testmod()
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Does this work?!?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Does this work?!?

Yes, it's working on my local machine, but it's not working on the build test. That's why I added '# doctest: +NORMALIZE_WHITESPACE' to each test.